Correlation between Implant Surface Roughness and Implant Stability: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question
2.2. Inclusion and Exclusion Criteria
2.2.1. Population
- Inclusion criteria; studies that evaluated the effect of the modification of the surface topography on the stability of dental implants.
- Exclusion criteria; studies that do not describe the roughness characteristics of the surfaces under study.
2.2.2. Interventions
- Inclusion criteria.
- -
- Studies evaluating the influence of surface roughness on implant stability which could be measured with RFA and IT.
- -
- The period of measurement began at the time of implant insertion and continued for a maximum of three months.
- -
- Any animal or human study; in vivo or in vitro model.
- Exclusion criteria.
- -
- Studies with bone defects made artificially in the bone.
- -
- Studies with any adjunctive therapy.
- -
- In vitro studies that do not use animal tissues.
- -
- Immediate load in vivo studies
2.2.3. Comparison
- Inclusion criteria; studies comparing the influence of surface roughness of different titanium dental implants with each other or with a control surface.
- Exclusion criteria; studies with zirconio implants or implants with surface other than titanium.
2.2.4. Outcomes
- Exclusion criteria.
- -
- Studies that didn’t use RFA or IT to asess primary stability
- -
- Studies using other methods of primary stability assesment
2.2.5. Study Design
2.3. Search Strategy
2.4. Selection of Studies
2.5. Data Extraction
2.6. Stability Values
2.7. Roughness Values
- Smooth surfaces: Sa value < 0.5 µm (e.g., polished abutment surface).
- Minimally rough surfaces: Sa value 0.5–1 µm (e.g., turned implants).
- Moderately rough surface; Sa value 1–2 µm (e.g., most commonly used types).
- Rough surfaces; Sa value > 2 µm (e.g., plasm-sprayed surfaces).
2.8. Publication Bias Analysis
3. Results
3.1. Study Selection
- Reason 1; In vitro studies but without using animal tissue. (n = 3)
- Reason 2; does not provide data on surface roughness values, or values are very similar and not comparable. (n = 22)
- Reason 3; does not use RFA or IT as stability measures (n = 15)
3.2. Included Study Characteristics
3.3. Risk of Bias Assessment
3.4. Statistical Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wennerberg, A.; Albrektsson, T. Effects of titanium Surface topography on bone integration: Asystematic review. Clin. Oral. Implant. Res. 2009, 20 (Suppl. S4), 172–184. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.F. A role for surface topography in creating and maintaining bone at titanium endosseous implants. Rev. J. Prosthet. Dent. 2000, 84, 522–534. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T. On osseointegration in relation to implant surfaces. Clin. Implant. Dent. Relat. Res. 2019, 21, 4–7. [Google Scholar] [CrossRef]
- Shalabi, M.; Gortemaker, A.; Hof, M.V.; Jansen, J.; Creugers, N. Implant surface roughness and bone healing: A systematic review. J. Dent. Res. 2006, 85, 496–500, Erratum in J. Dent. Res. 2006, 85, 670. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.N.; Oshida, Y.; Lima, J.H.C.; Muller, C.A. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J. Mech. Behav. Biomed. Mater. 2008, 1, 234–242. [Google Scholar] [CrossRef]
- Gittens, R.A.; Scheideler, L.; Rupp, F.; Hyzy, S.L.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014, 10, 2907–2918. [Google Scholar] [CrossRef] [PubMed]
- Feller, L.; Jadwat, Y.; Khammissa, R.A.G.; Meyerov, R.; Schechter, I.; Lemmer, J. Cellular responses evoked by different surface characteristics of intra osseous titanium implants. BioMed Res. Int. 2015, 2015, 171945. [Google Scholar] [CrossRef] [PubMed]
- Matos, G.R.M. Surface roughness of dental implant and osseointegration. J. Maxillofac. Oral. Surg. 2021, 20, 1–4. [Google Scholar] [CrossRef]
- Piatelli, A.; Manzon, L.; Scarano, A.; Paolantonio, M.; Piattelli, M. Histologic and histomorphometric analysis of the bone response to machined and sandblasted titanium implants: An experimental study in rabbits. Int. J. Oral Maxillofac. Implant. 1998, 13, 805–810. [Google Scholar]
- Wennerberg, A.; Ektessabi, A.; Albrektsson, T.; Johansson, C.; Andersson, B. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int. J. Oral. Maxillofac. Implant. 1997, 12, 486–494. [Google Scholar]
- Buser, D.; Nydegger, T.; Oxland, T.; Cochran, D.L.; Schenk, R.K.; Hirt, H.P.; Snétivy, D.; Nolte, L. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: A biomechanical study in the maxilla of miniature pigs. J. Biomed. Mater. Res. 1999, 45, 75–83. [Google Scholar] [CrossRef]
- Hallgren, C.; Reimers, H.; Chakarov, D.; Gold, J.; Wennerberg, A. An in vivo study of bone response to implants topographically modified by laser micromachining. Biomaterials 2003, 24, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Velasco, E.; Monsalve-Guil, L.; Jimenez, A.; Ortiz, I.; Moreno-Muñoz, J.; Nuñez-Marquez, E.; Pegueroles, M.; Pérez, R.A.; Gil, F.J. Importance of the Roughness and Residual Stresses of Dental Implants on Fatigue and Osseointegration Behavior. In Vivo Study in Rabbits. J. Oral. Investig. 2016, 42, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Turned versus anodised dental implants: A meta-analysis. J. Oral. Maxillofac. Surg. 2016, 74, 1949–1964. [Google Scholar] [CrossRef]
- He, F.; Yang, G.; Li, Y.; Wang, X.; Zhao, S. Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: An experimental study in the rabbit. Int. J. Oral. Maxillofac. Surg. 2009, 38, 677–681. [Google Scholar] [CrossRef]
- Östman, P.; Hellman, M.; Sennerby, L. Ten years later. Results from a prospective single-centre clinical study on 121 oxidized (TiUnite) Branemark implants in 46 patients. Clin. Implant. Dent. Relat. Res. 2012, 14, 852–860. [Google Scholar] [CrossRef]
- Rocci, A.; Rocci, M.; Rocci, C.; Scoccia, A.; Gargari, M.; Martignoni, M.; Gottlow, J.; Sennerby, L. Immediate loading of Branemark system TiUnite and machined-surface implants in the posterior mandible, part II: A ran-domized open-ended 9-year follow-up clinical trial. Int. J. Oral. Maxillofac. Implant. 2013, 28, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Vandeweghe, S.; Ferreira, D.; Vermeersch, L.; Mariën, M.; De Bruyn, H. Long-term retrospective follow-up of turned and moderately rough implants in the edentulous jaw. Clin. Oral. Implant. Res. 2016, 27, 421–426. [Google Scholar] [CrossRef]
- Jimbo, R.; Albrektsson, T. Long-term clinical success of minimally and moderately rough oral implants: A review of 71 studies with 5 years or more of follow-up. Implant. Dent. 2015, 24, 62–69. [Google Scholar] [CrossRef]
- De Bruyn, H.; Christiaens, V.; Doornewaard, R.; Jacobsson, M.; Cosyn, J.; Jacquet, W.; Vervaeke, S. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontology 2000 2017, 73, 218–227. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Manzanares-Céspedes, M.C.; Sevilla, P.; Nart, J.; Manzanares, N.; Manero, J.M.; Gil, F.J.; Boyd, S.K.; Rodríguez, D. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 538–545. [Google Scholar] [CrossRef] [PubMed]
- De Lima, E.; Levenzon, I.; Rolim, E.; Pererira, N.; Sadami, R. Primary stability of turned and acid-etched screw-type implants; a removal torque and histomorphometric study in rabbits. Int. J. Oral. Maxillofac. Implant. 2007, 22, 886–892. [Google Scholar]
- Gahlert, M.; Gudehus, T.; Eichhorn, S.; Steinhauser, E.; Kniha, H.; Erhardt, W. Biomechanical ahd histomorphometric comparison between wirconia implants with varying surface texture and a titanium implant in the maxilla of miniature pigs. Clin. Oral. Implant. Res. 2007, 18, 662–668. [Google Scholar] [CrossRef]
- Sul, Y.; Kang, B.; Johansson, C.; Um, H.; Park, C.; Albrektsson, T. The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. J. Biomed. Mater. Res. Part A 2009, 89A, 942–950. [Google Scholar] [CrossRef]
- Jimbo, R.; Fernandez-Rodriguez, J.; Sul, Y.-T.; Johansson, C.B. Principal component analysis: A novel analysis to evaluate the characteristics of osseointegration of different implant surfaces. Implant. Dent. 2011, 20, 364–368. [Google Scholar] [CrossRef]
- Barfeie, A.; Wilson, J.; Rees, J. Implant surface characteristics and their effect on osseointegration. Br. Dent. J. 2015, 218, E9. [Google Scholar] [CrossRef]
- Acil, Y.; Sievers, J.; Gulses, A.; Ayna, M.; Wiltfang, J.; Terheyden, H. Correlation between resonance frequency, insertion torque and bone-implant contact in self-cutting threated implants. Odontology 2017, 105, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-M.; Chee, T.-J.; Lew, W.-Z.; Feng, S.-W. Modified surgical drilling protocols influence osseointegration performance and predict value of implant stability parameters during implant healing process. Clin. Oral. Investig. 2020, 24, 3445–3455. [Google Scholar] [CrossRef]
- Meredith, N.; Alleyne, D.; Cawley, P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral. Implant. Res. 1996, 7, 261–267. [Google Scholar] [CrossRef]
- Sennerby, L.; Meredith, N. Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontology 2000 2008, 47, 51–66. [Google Scholar] [CrossRef]
- Al-Sabbagh, M.; Eldomiaty, W.; Khabbaz, Y. Can osseointegration be achieved without primary stability? Dent. Clin. North Am. 2019, 63, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wu, G.; Hunziker, E. The clinical significance of implant stability quuotient (ISQ): A literatura review. J. Oral. Biol. Craniofacial Res. 2020, 10, 629–638. [Google Scholar] [CrossRef]
- Brizuela-Velasco, A.; Álvarez, Á.; Gil-Mur, F.J.; Herrero, M.; Chávarri, D.; Chento, Y.; Dieguez, M. Relationship between insertion torque and resonance frequency measurements, performed by resonance frequency analysis, in micromobility of dental implants. Implant. Dent. 2015, 24, 607–611. [Google Scholar] [CrossRef]
- Stacchi, C.; Troiano, G.; Montaruli, G.; Mozzati, M.; Lamazza, L.; Antonelli, A.; Giudice, A.; Lombardi, T. Changes in implant stability using different site preparation techniques: Osseodensification drills versus piezoelectric surgery. A multi-center prospective randomized controlled clinical trial. Clin. Implant. Dent. Relat. Res. 2023, 25, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. he PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Lang, N.P.; Jepsen, S. Implant surfaces and design (Working group 4). Clin. Oral. Implant. Res. 2009, 20 (Suppl. S4), 228–231. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Do Carmo, L.; Marcello, R.; de Castilhos, E.; Del Bel Cury AFaot, F. Can implant surfaces affect implant stability during osseointegration? A randomized clinical trial. Braz. Oral Res. 2018, 32, e110. [Google Scholar]
- Dagher, M.; Mokbel, N.; Jabbour, G.; Naaman, N. Resonance frequency analysis, insertion torque, and bone to implant contact of 4 implant surfaces: Comparison and correlation study in sheep. Implant. Dent. 2014, 23, 672–678. [Google Scholar] [CrossRef]
- Del Fabbro, M.; Taschieri, S.; Canciani, E.; Addis, A.; Musto, F.; Weinstein, R.; Dellavia, C. Osseointegration of titanium implants with different rough surfaces: A histologic and histomorphometric study in an adult minipig model. Implant. Dent. 2017, 26, 357–366. [Google Scholar] [CrossRef]
- Gottlow, J.; Barkarmo, S.; Sennerby, L. An experimental comparison of two different clinically used implant designs and surfaces. Clin. Implant. Dent. Relat. Res. 2012, 14 (Suppl. S1), e204–e212. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Kim, M.-R.; Rim, J.-S.; Chung, S.-M.; Shin, S.-W. Comparison of implant stability after different implant Surface treatments in dog bone. J. Appl. Oral. Sci. 2010, 18, 415–420. [Google Scholar] [CrossRef]
- Kormoczi, K.; Gyorgy, K.; Papocsi, P.; Horvath, F.; Joob, A. The early loading of different Surface-modified implants: A randomized clinical trial. BMC Oral. Health 2021, 21, 207. [Google Scholar] [CrossRef]
- Qamheya, A.H.A.; Arısan, V.; Mutlu, Z.; Karabaglı, M.; Tekkeşin, M.S.; Kara, K.; Erol, A.; Ersanlı, S. Thermal oxidation and hydrofluoric acid treatment on the sandblasted implant Surface: A histologic histomorphometric and biomechanical study. Clin. Oral. Implant. Res. 2018, 29, 741–755. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.; Herrero-Climent, M.; Ríos-Carrasco, B.; Brizuela, A.; Romero, M.M.; Gil, J. Investigation of the influence of roughness and dental implant design o-n primary stability via analysis of insertion torque and implant stability quotient: An in vitro study. J. Clin. Med. 2023, 12, 4190. [Google Scholar] [CrossRef]
- Souza, F.; Furtado, T.S.M.; Dayube, U.R.C.; Melo, W.M.; Nishioka, R.S.; Poli, P.P.; Maiorana, C.; de Carvalho, P.S.P. Comparative in vivo study of alloy titanium implants with two different surfaces: Biomechanical and SEM analysis. Clin. Oral. Investig. 2019, 23, 4383–4397. [Google Scholar] [CrossRef]
- Sul, Y.; Jönsson, J.; Yoon, G.; Johansson, C. Resonance frequency measurements in vivo and related Surface properties of magnesium-incorporated, micropatterned and magnesium-incorporated TiUnite®, Osseotite®, SLA® and TiOblast® implants. Clin. Oral. Implant. Res. 2009, 20, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Strnad, J.; Urban, K.; Povysil, C.; Strnad, Z. Secondary stability assessment of titanium implants with an alkali-etched Surface: A resonance frequency analysis study in Beagle dogs. J. Oral. Maxillofac. Implant. 2008, 23, 502–512. [Google Scholar]
- Javed, F.; Almas, K.; Crespi, R.; Romanos, G.E. Implant Surface morphology and primary stability: Is there a correlation? Implant. Dent. 2011, 20, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Almas, K.; Smith, S.; Kutkut, A. What is the best micro and macro dental implant topography? Dent. Clin. N. Am. 2019, 63, 447–460. [Google Scholar] [CrossRef]
- Feller, L.; Chandran, R.; Khammissa, R.A.G.; Meyerov, R.; Jadwat, Y.; Bouckaert, M.; Schechter, I.; Lemmer, J. Osseointegration: Biological events in relation to characteristics of the implant surface. South Afr. Dent. J. 2014, 69, 112, 114–117. [Google Scholar]
- Butz, F.; Aita, H.; Wang, C.; Ogawa, T. Harder and stiffer bone osseointegrated to roughened titanium. J. Dent. Res. 2006, 85, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Wennerberg, A. Oral implant surfaces: Part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int. J. Prosthodont. 2004, 17, 536–543. [Google Scholar] [PubMed]
- Filho, L.C.M.; Cirano, F.R.; Hayashi, F.; Hsu, F.S.; Alexandre, C.; Dib, L.; Casati, M.Z. Assessment of the correlation between insertion torque and resonance frequency analysis of implants placed in bone tissue of different densities. J. Oral. Implant. 2014, 40, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, I.; Tsuboi, Y.; Wada, E.; Suwa, H.; Iizuka, T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery—Clinical, prospective, biomechanical, and imaging study. Bone 2005, 37, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Lages, F.S.; Douglas-de Oliveira, D.W.; Costa, F.O. Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis: A systematic review. Clin. Implant. Dent. Relat. Res. 2018, 20, 26–33. [Google Scholar] [CrossRef]
- dos Santos, M.V.; Elias, C.N.; Lima, J.H.C. The effects of superficial roughness and design on the primary stability of dental implants. Clin. Implant. Dent. Relat. Res. 2011, 13, 215–223. [Google Scholar] [CrossRef]
- Gupta, A.; Dhanraj, M.; Sivagami, G. Status of surface treatment in endosseous implant: A literary overview. Indian. J. Dent. Res. 2010, 21, 433–438. [Google Scholar] [CrossRef]
- Kohles, S.S.; Clark, M.B.; Brown, C.A.; Kenealy, J.N. Direct assessment of profilometric roughness variability from typical implant surface types. Int. J. Oral. Maxillofac. Implant. 2004, 19, 510–516. [Google Scholar]
- Aparicio, C.; Lang, N.P.; Rangert, B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clin. Oral. Implant. Res. 2006, 17, 2–7. [Google Scholar] [CrossRef]
- Rompen, E.; DaSilva, D.; Hockers, T.; Laundgren, A.K.; Gottlow, J.; Glauser, R.; Sennerby, L. Influence of implant design on primary fit and stability. Appl. Osseointegration Res. 2001, 2, 9–11. [Google Scholar]
- Gil, F.J.; Rodríguez, D.; Planell, J.A. Grain growth kinetics of pure titanium. Scripta Met. Mat. 1995, 53, 1361–1366. [Google Scholar] [CrossRef]
- Buxadera-Palomero, J.; Calvo, C.; Torrent-Camarero, S.; Gil, F.J.; Mas-Moruno, C.; Canal, C.; Rodríguez, D. Biofunctional polyethylene glycol coatings on titanium: An in vitro-based comparison of functionalization methods. Colloids Surf. B Biointerfaces 2017, 152, 367–375. [Google Scholar] [CrossRef]
- Gil, F.J.; Planell, J.; Proubasta, I.; Vazquez, J. Fundamentos de Biomecánica y Biomateriales; Ergon: Barcelona, Spain, 1997; pp. 125–132. [Google Scholar]
- Gil, F.J.; Planell, J.A. Aplicaciones biomédicas del titanio v sus aleaciones. Biomecánica 1993, 1, 34–43. [Google Scholar] [CrossRef]
Global | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Do Carmo [38] | ||||||
Dagher [39] | ||||||
Fabbro [40] | ||||||
Gotlow [41] | ||||||
Kim [42] | ||||||
Körmöczi [43] | ||||||
Qamheya [44] | ||||||
Romero [45] | ||||||
Souza [46] | ||||||
Sul [47] | ||||||
Strnad [48] |
Study | Sample Size | Study Type | Surface Treatment | Roughness Values | ISQ and TI Values | Evalution Time | Results Conclusions |
---|---|---|---|---|---|---|---|
Dagher (2014) [39] | 32 | Animal, In vivo. Prospective. 8 sheep | 1. TiO2 blasted and etched (Euroteknika) 2. Anodized (Ti Unite) 3. Sandblasted (SLA) 4. Sandblasted and etched (SLActive, Straumann) | 1. Euro-teknika: Moderately rough. Values not available 2. TiUnite: Sa 1,1-1,3 µm. SDR 37% 3.SLA 4. SLActive; Sa 1,5 | ISQ * Baseline 1. 75.46 2. 78.28 3. 73.5 4. 73.5 IT 1. 84.4 2. 77.7 3. 74.8 4. 57.3 | ISQ and IT Only at implant insertion | No significant correlation RFA-BIC. No correlation AFR-IT. No statistical correlation between roughness Surface-RFA. |
Del Fabbro (2017) [40] | 24 | Animal, in vivo. Minipigs | 1. Al2O3 blasted and etched (Dental tech) 2. Hydroxyapatite blasted and etched (Dental Tech) 3. Double etched (Politécnico) 4. Anodic spark deposition CPTi (Eurocoating) 5. Anodic spark deposition Ti (Eurocoating) 6. Blasted and etched -SLA type- (Nobil Bio Research) | 1. Sa; 1.4 µm. Ra 1.6 µm. SDr 71% 2. Sa; 2 µm. Ra 2.1 µm. SDr 170% 3. Sa; 1.3 µm. Ra; 1.4 µm. SDr 66% 4. Sa; 1.1 µm. Ra 1.3 µm. SDr 54% 5. Sa; 1 µm. Ra 1.1 µm. SDr 39% 6. Sa; 1.5 µm. Ra 2.2 µm. SDr 88% | ISQ * Baseline 1. 66.5 2. 72.5 3. 69.3 4. 65.9 5. 69 6. 70.5 * 3 months 1. 72.8 2. 73.3 3. 68.3 4. 74.6 5. 76.8 6. 78.4 | Only ISQ; * Baseline * 3 months | No significant difference between the six surfaces. No statistical correlation roughness surface—RFA at baseline. Statistical correlation roughness-surface at secondary stability and BIC |
Do Carmo (2018) [38] | 80 imp, 119 patients | Human, In vivo. RTC. | 1. Double etching (Osseotite) 2. Double etching with deposition of CaP Crystal (Nanotite) 3. Sandblasted and etched (SLA) 4. Sandblasted and etched, and made hydrophilic (SLActive) | Sa; 1. 0.68 µm. 2. 0.65 µm. 3. 1.78 µm. 4. 1.75 µm. | ISQ: * Implant Placement 1. 77 ± 4.9 2. 79 ± 4.8 3. 77 ± 5.2 4. 78 ± 4.0 * day 91; 1. 79 ± 3.7 2. 81 ± 2.4 3. 82 ± 2.1 4. 82 ± 1.6 IT 1. 44.4± 6.6 2. 46.8 ± 5 3. 43.8 ± 6.5 4. 43.9 ± 6.1 | IT; Implant placement. ISQ; * Implant placement. * weekly between 7 and 91 days post-surgery | IT values similar (p > 0.05) for all implant types. At 91 days, ISQ significantly higher than baseline for all implants (p < 0.001). ISQ and IT significantly correlated. No statistical correlation roughness surface—RFA |
Gottlow (2012) [41] | 180 implants | Animal, in vivo. 30 rabbits | 1. Oxidized (Replace) 2. Hydrophilic sand-blasted and acid etched (SLActive) | Sa; 1. 1.5 µm. 2. 1.78 µm. | ISQ: * Implant placement 1. 76-80 2. 65-76 * 6 weeks 1. 84-87 2. 85-88 | ISQ; * Implant placement * 10 days, 3, 6 weeks | Surfaces increased stability from placement to after 6 weeks. No statistical correlation roughness surface—RFA |
Kim (2010) [42] | 30 | Animal, in vivo. 5 Dogs | 1. Machined 2. Sandblasted large grit and acid etched 3. Anodized by oxidized electricity | Sa values; 1. 0.86 µm. 2. 1.76 µm. 3. 1.02 µm. | ISQ: * Baseline; 1. 71.33 ± 2.42 2. 71.67 ± 3.33 3. 71.83 ± 2.48 * 10 weeks 1. 70.83 ± 3.31 2. 72.83 ± 1.94 3. 72.67 ± 1.75 | ISQ; * Baseline * 3, 6 and 10 weeks after surgery | ISQ significantly different among 3 groups. No statistical correlation roughness surface—RFA. May have significant effects on biological stability (3 weeks). |
Kormoczi (2021) [43] | 75 implants, 60 patients | Human, in vivo. Prospective. | 1. alumina sandblasted and acid-etched (SA) 2. bioabsorbable apatite nano- coating (NH) 3. large-grit sandblasted and acid-etched (SLA) | Ra values; 1. 2.5–3 μm. 2. 2.5–3 μm 3. 1.42 μm | ISQ: * Baseline 1. 55.69 ( ± 15.7) 2. 59.11 ( ± 19.5) 3. 65.95 ( ± 9.8) * 6 weeks 1. 63.44 ( ± 16.7) 2. 64.10 ( ± 19.7) 3. 67.85 ( ± 9.9) | ISQ; * Baseline * Six weeks | All the ISQ values increased after six weeks. No statistical correlation roughness surface—RFA. |
Qamheya (2018) [44] | 15 | Animal, in vivo. Sheep | 1. Sandblastng and acid etching (SLA) 2. Sandblasting and thermal oxidation (SO) 3. Sandblasting, thermal oxidation, and HF acid etching (SOF) | Ra values: 1. 0.87 μm 2. 1.12 μm 3. 0.55 μm | ISQ: (SD) * Baseline: 1. 42.28 (13.4) 2. 52.39 (6.06) 3. 47.36 (6.93) * 3 weeks: 1. 61.11 (7.51) 2. 56.22 (5.76) 3. 62.56 (5.29) * 8 weeks: 1. 59.33 (11.2) 2. 60.22 (5.54) 3. 59.00 (4.74) IT: 1. 20 N/ cm 2. 18 N/cm 3. 15 N/cm | ISQ: * Baseline * 3 weeks * 8 weeks IT: * Baseline * Ba * Bas | No statistically significant correlation between any of the variables. Surface type did’t influencie osseointegration. No statistical correlation roughness surface—RFA No correlation IT-RFA. |
Romero (2023) [45] | 234 | In vitro, calf ribs. | 1. Sand blasting minimally rough surface (Tissue level) 2. Sand blasting minimally rough surface (Bone level) 3. Sand blasting rough surface (Tissue level) 4. Sand blasting rough surface (bone level) 5. Sand blasting moderately rough surface (Tissue level) 6. Sand blasting moderately rough surface (bone level) | Sa values: 1. 0.55 ± 0.01 2. 0.54 ± 0.07 3. 3.85 ± 0.18 4. 2.76 ± 0.21 5. 1.60 ± 0.22 6. 1.67 ± 0.19 | ISQ: * Surgery 1. 64.1 ± 5.4 2. 70.7 ± 8.5 3. 63 ± 8.1 4. 73 ± 4.4 5. 59.6 ± 9.5 6. 72 ± 5.7 IT: 1. 25.8 ± 10.4 2. 29.4 ± 11.8 3. 28.4 ± 11.4 4. 14.6 ± 4.35 5. 29 ± 11 6. 15.2 ± 7.4 | ISQ and IT: * Surgery | Rough surfaces with Sa values of 0.5 to 4 µm do not affect the primary stability. No statistical correlation roughness surface—RFA. Statistical correlation between ISQ and IT. |
Souza (2019) [46] | 20 | Animal, in vivo. Rabbits | 1. machined (control) 2. Test: Al2O3 sandblasting and acid etching | Ra values; 1. 0.46 ± 0.1 μm 2. 1.1 ± 0.16 μm | ISQ: * Baseline: 1. 48.1 ± 2.9 2. 50 ± 2 * 3 weeks; 1. 51.6 ± 2.3 2. 53.5 ± 1.9 * 6 weeks: 1. 52 ± 2 2. 54.75 ± 0.8 | ISQ: * Baseline * 3 weeks * 6 weeks | Higher statistically significant ISQ values in treated group. Statistical correlation surface roughness—RFA. |
Strnad (2008) [48] | 24 | Animal, in vivo. Beagle dogs. | 1. Turned, machined (control) 2. sandblasted, acid and alcali treated. (test) | * Sa values: 1. 0.3–0.5 2. 1.1–1.3 | ISQ: * Baseline: 1. 74.5 ± 2.99 2. 74 ± 2.45 No significant difference * 12 weeks 1. 73 ± 2.37 2.75 ± 2.28 | ISQ: * Baseline * 1, 3, 9, 12 weeks | Test surface enhances secondary stability. No correlation RFA-BIC. No statistical correlation roughness surface—RFA |
Sul (2009) [47] | 60 | Animal, in vivo. Rabbits | 1. Oxidized Mg incorporated 2. Oxidized MgMp incorporated 3. Anodized (Ti Unite) 4. Double etching (Osseotite) 5. Sandblasted and etched (SLA) 6. TiO2 blasted (TiOblast) | Sa values; 1. 0.7 ± 0.2 2. 0.7 ± 0.2 3. 1.3 ± 0.1 4. 0.7 ± 0.4 5. 1.2 ± 0.2 6. 0.9 ± 0.3 | ISQ * Baseline: 1. 67.9 ± 1.4 2. 66.2 ± 0.6 3. 68.6 ± 1.7 4. 67.8 ± 0.9 5. 67.9 ± 0.9 6; 68 ± 1.1 * 6 weeks: 1. 73.1 ± 2.1 2. 75.2 ± 1.8 3. 73.5 ± 2.3 4. 71.5 ± 2.5 5. 72.4 ± 2.6 6. 72.2 ± 3.1 | ISQ: * Baseline * 6 weeks | Implant surface influence secundary stability. No statistical correlation roughness surface—RFA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Serrano, M.; Romero-Ruiz, M.-M.; Herrero-Climent, M.; Rios-Carrasco, B.; Gil-Mur, J. Correlation between Implant Surface Roughness and Implant Stability: A Systematic Review. Dent. J. 2024, 12, 276. https://doi.org/10.3390/dj12090276
Romero-Serrano M, Romero-Ruiz M-M, Herrero-Climent M, Rios-Carrasco B, Gil-Mur J. Correlation between Implant Surface Roughness and Implant Stability: A Systematic Review. Dentistry Journal. 2024; 12(9):276. https://doi.org/10.3390/dj12090276
Chicago/Turabian StyleRomero-Serrano, Marta, Manuel-María Romero-Ruiz, Mariano Herrero-Climent, Blanca Rios-Carrasco, and Javier Gil-Mur. 2024. "Correlation between Implant Surface Roughness and Implant Stability: A Systematic Review" Dentistry Journal 12, no. 9: 276. https://doi.org/10.3390/dj12090276
APA StyleRomero-Serrano, M., Romero-Ruiz, M. -M., Herrero-Climent, M., Rios-Carrasco, B., & Gil-Mur, J. (2024). Correlation between Implant Surface Roughness and Implant Stability: A Systematic Review. Dentistry Journal, 12(9), 276. https://doi.org/10.3390/dj12090276