The Fracture Resistance Comparison between Titanium and Zirconia Implant Abutments with and without Ageing: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion/Exclusion Criteria
2.3. Selection of Studies
2.4. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Implant Dimensions
3.2. Testing Parameters
3.3. Cyclic Loading and Thermocycling
3.4. Fracture Load Testing
3.5. Implant Diameter Influence on Fracture Strength
3.6. Abutment Aging Influence on Fracture Strength
3.7. Load Angle Influence on Fracture Strength
3.8. Abutment Material Influence on the Fracture Strength
3.9. Fracture during Cyclic Loading
3.10. Crown Material Affecting Abutment Fracture Strength
3.11. Abutment Modes of Failure
4. Discussion
5. Conclusions
- The implant diameter positively correlates with the fracture strength of abutments.
- Titanium and two-piece zirconia abutments retain similar fracture strength after cyclic loading, while one-piece zirconia abutments show significantly reduced fracture strength after cyclic loading.
- The increase in the number of cycles during fatigue testing negatively affects one-piece zirconia fracture strength.
- Despite different angulations, the fracture strength of abutments stays similar between the groups.
- Two-piece zirconia abutments withstood the most cycles and the highest force during cyclic loading until fracture.
- The use of ceramic cemented crowns noticeably decreases the fracture strength of both one-piece and two-piece zirconia abutments, whereas metal cemented crowns significantly decrease the fracture strength of only one-piece zirconia.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brånemark, P.I. Osseointegration and its experimental background. J. Prosthet. Dent. 1983, 50, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Plecko, M.; Sievert, C.; Andermatt, D.; Frigg, R.; Kronen, P.; Klein, K.; Stübinger, S.; Nuss, K.; Bürki, A.; Ferguson, S.; et al. Osseointegration and biocompatibility of different metal implants—A comparative experimental investigation in sheep. BMC Musculoskelet. Disord. 2012, 13, 32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edmonds, H.M.; Glowacka, H. The ontogeny of maximum bite force in humans. J. Anat. 2020, 237, 529–542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gay, T.; Rendell, J.; Majoureau, A.; Maloney, F.T. Estimating human incisal bite forces from the electromyogram/bite-force function. Arch. Oral Biol. 1994, 39, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Brodbeck, U. The ZiReal Post: A new ceramic implant abutment. J. Esthet. Restor. Dent. 2003, 15, 10–23; discussion 24. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.L.; Dunne, J.T., Jr. An esthetic comparison of a metal ceramic crown and cast metal abutment with an all-ceramic crown and zirconia abutment: A clinical report. J. Prosthet. Dent. 2004, 91, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Valsan, I.M.; Pauna, M.R.; Petre, A.E.; Oancea, L. Biologic and Esthetic Outcome of CAD/CAM Custom Ceramic Implant Abutment: A Clinical Report. Maedica 2021, 16, 145–148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andersson, M.; Carlsson, L.; Persson, M.; Bergman, B. Accuracy of machine milling and spark erosion with a CAD/CAM system. J. Prosthet. Dent. 1996, 76, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Kurbad, A. A new milling machine for computer-aided, in-office restorations. Int. J. Comput. Dent. 2017, 20, 201–213. [Google Scholar] [PubMed]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stimmelmayr, M.; Sagerer, S.; Erdelt, K.; Beuer, F. In vitro fatigue and fracture strength testing of one-piece zirconia implant abutments and zirconia implant abutments connected to titanium cores. Int. J. Oral Maxillofac. Implant. 2013, 28, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Bankoglu Gungor, M.; Karakoca Nemli, S.; Yilmaz, H.; Aydin, C. Fracture resistance of different implant supported ceramic abutment/crown systems. Eur. Oral Res. 2019, 53, 80–87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elsayed, A.; Wille, S.; Al-Akhali, M.; Kern, M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin. Oral Implant. Res. 2018, 29, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Moon, I.S.; Berglundh, T.; Abrahamsson, I.; Linder, E.; Lindhe, J. The barrier between the keratinized mucosa and the dental implant. An experimental study in the dog. J. Clin. Periodontol. 1999, 26, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Linkevicius, T.; Vaitelis, J. The effect of zirconia or titanium as abutment material on soft peri-implant tissues: A systematic review and meta-analysis. Clin. Oral. Implant. Res. 2015, 26 (Suppl. 11), 139–147. [Google Scholar] [CrossRef] [PubMed]
- ISO 14801; Dentistry—Implants—Dynamic Fatigue Test for Endosseous Dental Implants. International Organization for Standardization: Geneve, Switzerland, 2016.
- Camposilvan, E.; Leone, R.; Gremillard, L.; Sorrentino, R.; Zarone, F.; Ferrari, M.; Chevalier, J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent. Mater. 2018, 34, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Atsü, S.S.; Aksan, M.E.; Bulut, A.C. Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging. Int. J. Oral Maxillofac. Implant. 2019, 34, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Giner, S.; Bartolomé, J.F.; Gomez-Cogolludo, P.; Castellote, C.; Pradíes, G. Fatigue fracture resistance of titanium and chairside CAD-CAM zirconia implant abutments supporting zirconia crowns: An in vitro comparative and finite element analysis study. J. Prosthet. Dent. 2021, 125, 503.e1–503.e9. [Google Scholar] [CrossRef] [PubMed]
- Alsahhaf, A.; Spies, B.C.; Vach, K.; Kohal, R.J. Fracture resistance of zirconia-based implant abutments after artificial long-term aging. J. Mech. Behav. Biomed. Mater. 2017, 66, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Foong, J.K.; Judge, R.B.; Palamara, J.E.; Swain, M.V. Fracture resistance of titanium and zirconia abutments: An in vitro study. J. Prosthet. Dent. 2013, 109, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.; Us, Y.O. Fatigue survival and failure resistance of titanium versus zirconia implant abutments with various connection designs. J. Prosthet. Dent. 2019, 122, 315.e1–315.e7. [Google Scholar] [CrossRef] [PubMed]
- Att, W.; Yajima, N.D.; Wolkewitz, M.; Witkowski, S.; Strub, J.R. Influence of preparation and wall thickness on the resistance to fracture of zirconia implant abutments. Clin. Implant. Dent. Relat. Res. 2012, 14 (Suppl. 1), e196–e203. [Google Scholar] [CrossRef] [PubMed]
- Saker, S.; El-Shahat, S.; Ghazy, M. Fracture Resistance of Straight and Angulated Zirconia Implant Abutments Supporting Anterior Three-Unit Lithium Disilicate Fixed Dental Prostheses. Int. J. Oral Maxillofac. Implant. 2016, 31, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Sghaireen, M.G. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations. Clin. Implant. Dent. Relat. Res. 2015, 17, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, A.; Wille, S.; Al-Akhali, M.; Kern, M. Comparison of fracture strength and failure mode of different ceramic implant abutments. J. Prosthet. Dent. 2017, 117, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Karasan, D.; Att, W.; Sailer, I.; Canay, S. Mechanical Stability of Zirconia Implant Abutments Supporting Cantilevered Fixed Dental Prostheses After Fatigue Loading. Int. J. Prosthodont. 2021, 34, 615–625. [Google Scholar] [CrossRef] [PubMed]
- AlAmar, M.; Alqahtani, F. Effect of Different Implant-Abutment Connection Materials on the Fracture Resistance of Zirconia Abutments. J. Oral Implantol. 2020, 46, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Nakano, T.; Ono, S.; Yamanishi, Y.; Matsuoka, T.; Ishigaki, S. Fracture Resistance of Zirconia Abutments with or without a Titanium Base: An In Vitro Study for Tapered Conical Connection Implants. Materials 2022, 15, 364. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shabanpour, R.; Mousavi, N.; Ghodsi, S.; Alikhasi, M. Comparative Evaluation of Fracture Resistance and Mode of Failure of Zirconia and Titanium Abutments with Different Diameters. J. Contemp. Dent. Pract. 2015, 16, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, K.; Liu, G.; Wang, D. Fracture resistance of inter-joined zirconia abutment of dental implant system with injection molding technique. Clin. Oral Implant. Res. 2013, 24, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, R.; Sánchez, D.; Euán, R.; Flores, A.M. Effect of fatigue loading and failure mode of different ceramic implant abutments. J. Prosthet. Dent. 2022, 127, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Markarian, R.A.; Galles, D.P.; França, F.M.G. Dental implant-abutment fracture resistance and wear induced by single-unit screw-retained CAD components fabricated by four CAM methods after mechanical cycling. J. Prosthet. Dent. 2022, 128, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.B.; Asopa, S.J.; Deepa Goel, A.; Jyoti, D.; Somayaji, N.S.; Sabharwal, R. Influence of Implant Neck Design on Crestal Bone Loss: A Comparative Study. Niger. J. Surg. 2020, 26, 22–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mavrogenis, A.F.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of implant osseointegration. J. Musculoskelet. Neuronal. Interact 2009, 9, 61–71. [Google Scholar] [PubMed]
- Gupta, R.; Gupta, N.; Weber, D.D.S.K.K. Dental Implants; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Totou, D.; Naka, O.; Mehta, S.B.; Banerji, S. Esthetic, mechanical, and biological outcomes of various implant abutments for single-tooth replacement in the anterior region: A systematic review of the literature. Int. J. Implant. Dent. 2021, 7, 85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanawa, T. Zirconia versus titanium in dentistry: A review. Dent. Mater. J. 2020, 39, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Nakano, R.; Homma, S.; Takanashi, T.; Hirano, T.; Furuya, Y.; Yajima, Y. Influence of eccentric cyclic loading on implant components: Comparison between titanium and zirconia abutments. Dent. Mater. J. 2021, 40, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.T.; Kao, H.C.; Cheng, C.K.; Fang, H.W.; Huang, C.H.; Hsu, M.L. Mechanical performance of conical implant-abutment connections under different cyclic loading conditions. J. Mech. Behav. Biomed. Mater. 2019, 90, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Vinhas, A.S.; Aroso, C.; Salazar, F.; López-Jarana, P.; Ríos-Santos, J.V.; Herrero-Climent, M. Review of the Mechanical Behavior of Different Implant-Abutment Connections. Int. J. Environ. Res. Public Health 2020, 17, 8685. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, H.; Hata, Y.; Watanabe, F. Implant fracture under dynamic fatigue loading: Influence of embedded angle and depth of implant. Odontology 2016, 104, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Cha, H.S. Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading. J. Adv. Prosthodont. 2018, 10, 415–421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spies, B.C.; Nold, J.; Vach, K.; Kohal, R.J. Two-piece zirconia oral implants withstand masticatory loads: An investigation in the artificial mouth. J. Mech. Behav. Biomed. Mater. 2016, 53, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Sailer, T.; Stawarczyk, B.; Jung, R.E.; Hämmerle, C.H. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Int. J. Oral Maxillofac. Implant. 2009, 24, 850–858. [Google Scholar] [PubMed]
- Sailer, I.; Asgeirsson, A.G.; Thoma, D.S.; Fehmer, V.; Aspelund, T.; Özcan, M.; Pjetursson, B.E. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept. Clin. Oral Implant. Res. 2018, 29, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Leutert, C.R.; Stawarczyk, B.; Truninger, T.C.; Hämmerle, C.H.; Sailer, I. Bending moments and types of failure of zirconia and titanium abutments with internal implant-abutment connections: A laboratory study. Int. J. Oral Maxillofac. Implant. 2012, 27, 505–512. [Google Scholar] [PubMed]
- Gracis, S.; Michalakis, K.; Vigolo, P.; Vult von Steyern, P.; Zwahlen, M.; Sailer, I. Internal vs. external connections for abutments/reconstructions: A systematic review. Clin. Oral Implant. Res. 2012, 23 (Suppl. 6), 202–216. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Cayón, R.; Vaquero-Aguilar, C.; Torres-Lagares, D.; Jiménez-Melendo, M.; Gutiérrez-Pérez, J.L. Mechanical resistance of zirconium implant abutments: A review of the literature. Med. Oral Patol. Oral Cir. Buccal 2012, 17, e246–e250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gross, M.D. Occlusion in implant dentistry. A review of the literature of prosthetic determinants and current concepts. Aust. Dent. J. 2008, 53 (Suppl. 1), S60–S68. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Oh, T.J.; Misch, C.E.; Wang, H.L. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale. Clin. Oral Implant. Res. 2005, 16, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulou, P.E.; Kamposiora, P.; Eliades, G.; Papavasiliou, G.; Razzoog, M.E.; Bayne, S.C. Cyclic Loading Effect on Color Stability of Unshaded versus Shaded Zirconia. J. Esthet. Restor. Dent. 2016, 28, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Qasim, T.Q.; El-Masoud, B.M.; Laban, A.M.A. The effect of resistance grooves on the fracture toughness of zirconia-based crowns from mono and cyclic loading. Eur. J. Dent. 2018, 12, 491–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gehrke, S.A.; Poncio da Silva, P.M.; Calvo Guirado, J.L.; Delgado-Ruiz, R.A.; Dedavid, B.A.; Aline Nagasawa, M.; Shibli, J.A. Mechanical behavior of zirconia and titanium abutments before and after cyclic load application. J. Prosthet. Dent. 2016, 116, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Gou, M.; Chen, H.; Fu, M.; Wang, H. Fracture of Zirconia Abutments in Implant Treatments: A Systematic Review. Implant. Dent. 2019, 28, 378–387. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcelos, J.E.L.; de Matos, J.D.M.; Queiroz, D.A.; Lopes, G.D.R.S.; de Lacerda, B.C.G.V.; Bottino, M.A.; Turssi, C.P.; Basting, R.T.; do Amaral, F.L.B.; França, F.M.G. Implant-Abutment Misfit after Cyclic Loading: An In Vitro Experimental Study. Materials 2022, 15, 5341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Queiroz, D.A.; Hagee, N.; Lee, D.J.; Zheng, F. The behavior of a zirconia or metal abutment on the implant-abutment interface during cyclic loading. J. Prosthet. Dent. 2020, 124, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Coray, R.; Zeltner, M.; Özcan, M. Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. J. Mech. Behav. Biomed. Mater. 2016, 62, 333–346. [Google Scholar] [CrossRef] [PubMed]
- García-González, M.; Blasón-González, S.; García-García, I.; Lamela-Rey, M.J.; Fernández-Canteli, A.; Álvarez-Arenal, Á. Optimized Planning and Evaluation of Dental Implant Fatigue Testing: A Specific Software Application. Biology 2020, 9, 372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Assunção, W.G.; Barão, V.A.; Delben, J.A.; Gomes, É.A.; Garcia, I.R., Jr. Effect of unilateral misfit on preload of retention screws of implant-supported prostheses submitted to mechanical cycling. J. Prosthodont. Res. 2011, 55, 12–18. [Google Scholar] [CrossRef] [PubMed]
Authors | Journal | Title | Date | |
---|---|---|---|---|
1 | Elsayed, A., et al. [13] | Clinical Oral Implants Research | Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments | 2018 |
2 | Atsü, S.S., et al. [19] | The International Journal of Oral and Maxillofacial Implants | Fracture Resistance of Titanium, Zirconia and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging | 2019 |
3 | Giner, S., et al. [20] | Journal of Prosthetic Dentistry | Fatigue fracture resistance of titanium and chairside CAD-CAM zirconia implant abutments supporting zirconia crowns: An in vitro comparative and finite element analysis study. | 2021 |
4 | Alsahhaf, A., et al. [21] | Journal of The Mechanical Behavior of Biomedical Materials | Fracture resistance of zirconia-based implant abutments after artificial long-term aging | 2017 |
5 | Foong, J.K., et al. [22] | The Journal of Prosthetic Dentistry | Fracture resistance of titanium and zirconia abutments: an in vitro study | 2013 |
6 | Sen, N., et al. [23] | The Journal of Prosthetic Dentistry | Fatigue survival and failure resistance of titanium versus zirconia implant abutments with various connection designs | 2019 |
7 | Att, W., et al. [24] | Clinical Implant Dentistry and Related Research | Influence of Preparation and Wall Thickness on the Resistance to Fracture of Zirconia Implant Abutments | 2012 |
8 | Saker, S., et al. [25] | International Journal of Oral and Maxillofacial Implants | Fracture Resistance of Straight and Angulated Zirconia Implant Abutments Supporting Anterior Three-Unit Lithium Disilicate Fixed Dental Prostheses | 2016 |
9 | Sghaireen, M.G. [26] | Clinical Implant Dentistry and Related Research | Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations | 2015 |
10 | Elsayed, A., et al. [27] | The Journal of Prosthetic Dentistry | Comparison of fracture strength and failure mode of different ceramic implant abutments | 2017 |
11 | Karasan, D., et al. [28] | The International Journal of Prosthodontics | Mechanical Stability of Zirconia Implant Abutments Supporting Cantilevered Fixed Dental Prostheses After Fatigue Loading | 2021 |
12 | AlAmar, M., et al. [29] | Journal of Oral Implantology | The effect of different implant-abutment connection materials on the fracture resistance of zirconia abutments | 2020 |
13 | Watanabe, S., et al. [30] | Materials | Fracture resistance of zirconia abutments with or without a titanium base: an in vitro study for tapered conical connection implants | 2022 |
14 | Shabanpour, R., et al. [31] | The Journal of Contemporary Dental Practice | Comparative Evaluation of Fracture Resistance and Mode of Failure of Zirconia and Titanium Abutments with Different Diameters | 2015 |
15 | Yang, J., et al. [32] | Clinical Oral Implants Research | Fracture Resistance of inter-joined zirconia abutment of dental implant system with injection molding technique | 2013 |
16 | Cárdenas, R., et al. [33] | The Journal of Prosthetic Dentistry | Effect of fatigue loading and failure mode of different ceramic implant abutments | 2021 |
17 | Markarian, R.A., et al. [34] | The Journal of Prosthetic Dentistry | Dental Implant-abutment fracture resistance and wear induced by single-unit screw-retained CAD components fabricated by four CAM methods after mechanical cycling | 2020 |
1st Author Date | Implant Type Dimensions | Implant Fixture | Simulated Marginal Bone Level Changes | Implant-abutment Connection | Abutment Torque Value | Specimens in Group | Restoration | Restoration Fixture | Type of Titanium Abutment + Manufacturer | Type of Zirconia Abutment + Manufacturer |
---|---|---|---|---|---|---|---|---|---|---|
Elsayed, A et al., 2018 [13] | FairTwo (FairImplant) 4.2 × 11.5 mm | Autopolimeryzing resin (Technovit 4000) | 0 mm | internal hexagon | 25 Ncm | 8 | Lithium-Disilicate (IPS E.max CAD Ivoclar Vivadent) | Cemented (Multilink Automix) | FairImplant titanium abutment (FairImplant) | One-piece and two-piece zirconia (not reported) |
Atsü, S.S. et al., 2019 [19] | Sky Implant (Bredent) analogs 3.5 × 9 mm | Autopolimeryzing resin (Technovit 4071) | Not reported | Internal hexagon | 25 Ncm | 12 | Monolithic lithium disilicate | Cemented (Panavia V5) | Grade 4 Ti (Bredent) | Two-piece zirconia (Bredent) |
Giner, S., et al., 2021 [20] | Screw line promote plus (Camlog Implants) 4.3 × 11 mm | Epoxy Resin (EpoxiCure 2) | 3 mm | Tube-In-Tube | 20 Ncm | 11 | Monolithic zirconia | Cemented (Speed Cem Plus) | Camlog Esthetic | Two-piece zirconia (Incoris ZI CAD/CAM + CAD/CAM titanium base) |
Alsahhaf, A., et al., 2017 [21] | SIC Invent 3.3 mm | Autopolimeryzing resin (Technovit 4000) | 1.5 mm | Internal hexagon | 20 Ncm | 16 | Metal crown (Kera S-powder) | Cemented (Panavia 21) | Grade 5 Ti (SIC Invent) | One-piece CAD/CAM zirconia (SINA-Z), two-piece zirconia luted (SINA-Z + SIC Invent), two-piece zirconia cemented (SINA-Z + SIC Invent + Panavia 21) and one-piece prefabricated (White Star) |
Foong, J.K., et al., 2013 [22] | OsseoSpeed (AstraTech Dental AB) 4 × 9 mm | Autopolimeryzing resin (Unifast Trad III) | 0 mm | Internal hexagon | 20 Ncm | 11 | Metal crown (Coron Institute Straumann AB) | Cemented (Panavia F2.0) | TiDesign (AstraTech Dental AB) | One-piece ZirDesign (AstraTech Dental AB) |
Sen, N., et al., 2019 [23] | Nobel Parallel CC RP, Replace Select Straight TiU RP, 4.3 × 10 mm NobelSpeedy Groovy RP (Nobel Biocare) 4 × 10 mm | Autopolimeryzing resin (Technovit 4000) | 3 mm | Internal conical, internal tri-channel and external hexagonal | 35 Ncm | 9 | Monolithic zirconia (VITA YZ ST) | Cemented (RelyX Unicem 3M ESPE) | Procera Esthetic (Nobel Biocare) | One- and two-piece Esthetic Abutment (Nobel Biocare) |
Att, W. et al., 2012 [24] | Nobel Replace Straight Groovy (Nobel Biocare) 4 × 13 mm | Autopolimeryzing resin (Technovit 4000) | Not reported | Internal hexagon | 35 Ncm | 16 | Chromium-cobalt metal crown (Dentitan) | Cemented (Panavia 21) | NobelProcera Titanium RP (Nobel Biocare) | One-piece NobelProcera Zirconia RP (Nobel Biocare) |
Saker, S et al., 2016 [25] | Legacy (Implant Direct) 3.7 × 13 mm | Epoxy Resin (System Three Resin) | Not reported | Internal hexagon | 30 Ncm | 8 | Lithium-Disilicate three-unit FDP | Cemented (RelyX Unicem 3M ESPE) | Titanium abutment (Implant Direct) | One-piece Zirconia abutment (Implant Direct) |
Sghaireen, MG 2015 [26] | Oraltronics (Oraltronics Dental Implant Technology GmbH) 4 × 10 mm | Autopolimeryzing resin (Melliodent Heraeus Kulzer) | 0 mm | internal hexagon | 30 Ncm | 15 | Ti: metal-ceramic (Remanium G-Soft + VITA ceramics) Zr-1: In-Ceram Alumina (VITA) Zr-2: IPS Empress Esthetic (Ivoclar Vivadent) | Cemented (Super Dent Glass Ionomer) | Oraltronics titanium abutments (Oraltronics Dental Implant Technology GmbH) | One-piece and two-piece Oraltronics zirconia abutments (Oraltronics Dental Implant Technology GmbH) |
Elsayed, A., et al., 2017 [27] | FairTwo (FairImplant) 4.2 × 11.5 mm | Autopolimeryzing resin (Technovit 4000) | 0 mm | internal hexagon | 25 Ncm | 8 | Lithium-Disilicate (IPS E.max CAD Ivoclar Vivadent) | Cemented (Multilink Automix) | FairImplant titanium abutment (FairImplant) | One-piece and two-piece zirconia (not reported) |
Karasan, D., et al., 2021 [28] | Bone Level (Strauman AG) 4.1 × 13 mm | Autopolimeryzing resin (Technovit 4000) | not reported | internal hexagon | 35 Ncm | 8 | Two- and three-unit FDP cobalt-chromium (Wirobond C+) | Cemented (Multilink Automix) | Anatomic Ti Abutment (Straumann AG) | One-piece (IPS e.max Anatomic Abutment Straumann) |
AlAmar, M., et al., 2020 [29] | Nobel Replace (Nobel) analogs (3.5 mm) | Metal jig | Not reported | Internal hexagon | 35 Ncm | 7 | No restoration | No restoration | Not reported | Not reported |
Watanabe, S., et al., 2022 [30] | Nobel Replace (Nobel) 4.3 × 10 mm Roxolid BLT (Straumann) 4.1 × 10 mm | Collet chuck (EY Collet) | 0 and 3 mm | Internal hexagon | 35 Ncm | 3 | Hemispherical cap (SK material) | Not reported | Nobel Titanium (Nobel Biocare) and Straumann Titanium (Straumann) | One-piece and two-piece Nobel Procera (Nobel Biocare) and CARES (Straumann) |
Shabanpour, R., et al., 2015 [31] | XiVE (Dentsply Friadent) 3.4 mm 3.8 mm 4.5 mm 5.5 mm | Metal jig | Not reported | Internal hexagon | 24 Ncm | 10 | No restoration | NO restoration | XiVE titanium abutment (Dentsply Friadent) | one-piece XiVE, two-piece XiVE (Dentply Friadent), one-piece Zirkonzahn (Zirkonzahn GmbH) |
Yang, J et al., 2013 [32] | Osstem GSII (Osstem Implants) 5 × 10 mm | Metal jig | Not reported | Internal hexagon | 40 Ncm | 10 | No restoration | No restoration | Osstem GSII (Osstem Implants) | One-piece Zirconia (TZ-3YB-E Tosh) |
Cárdenas, R., et al., 2021 [33] | Bone Level RC (Straumann AG) 4.1 × 11 mm | metal jig | 0 mm | internal hexagon | 35 Ncm | 10 | Lithium-Disilicate (IPS E.max Press Ivoclar Vivadent) | Cemented (Multilink Hybrid Abutment) | Variobase Ti (Straumann AG) | One-piece (Straumann CARES) and two-piece (Variobase TiBase) |
Markarian, R.A., et al., 2020 [34] | Implant analogs (AN4100 S.I.N) 4.1 mm | metal jig | 3 mm | internal hexagon | 32 Ncm | 10 | No restoration | No restoration | AI 4151-Q (S.I.N.) | CAD/CAM abutment (Z-CAD HD) |
1st Author Date | Titanium Fracture Strength before Fatigue (N) | One-Piece Zirconia Fracture Strength before Fatigue (N) | Two-Piece Zirconia Fracture Strength before Fatigue (N) | Environment | Load Application Axis angle | Indenter | Testing Device | Crosshead Speed | Fracture Titanium Strength after Fatigue (N) ± SD | Fracture One-Piece Zirconia Strength after Fatigue (N) ± SD | Fracture Two-Piece Zirconia Strength after Fatigue (N) ± SD | Primary Mode of Failure of Two-Piece Zirconia | Primary Mode of Failure of One-Piece Zirconia | Primary Mode of Failure of Titanium |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elsayed, A., et al., 2018 [13] | Not reported | Not reported | Not reported | Dry | 30° | Semispherical loading stamp | Universal testing machine (Germany 2050, Zuick/Roell) with 0.5 mm tin foil | 2 mm/min | 900 N | Median 198 N | 944 N | Screw fracture and implant connection deformation | Internal hexagon fracture | Screw fracture and implant connection deformation |
Atsü, S.S., et al., 2019 [19] | Not reported | Not reported | Not reported | Dry | 30° | Spherical loading stamp | Universal testing machine (Lloyd LRK 10 Plus) with 0.5 mm tin foil | 0.5 mm/min | 787.8 ± 120.9 N | Not reported | 623.93 ± 121 N | Screw fracture and implant connection deformation | Not reported | Abutment and crown fracture |
Giner, S., et al., 2021 [20] | Not reported | Not reported | Not reported | Dry | 30° | Universal indenter | Electromagnetic testing machine (Shimadzu EMT series EMT-1kn-30; Shimadzu) | Not reported | 240 N at 2 × 106 cycles | Not reported | 340 N at 2 × 106 cycles | Screw bending and implant neck fracture | Not reported | Screw bending and implant neck fracture |
Alsahhaf, A., et al., 2017 [21] | 811.8 ± 171 N | CAD/CAM: 509.5 N ± 117.6 N Prefabricated: 480.5 ± 85.2 N | Cemented: 660.2 ± 140.3 N Luted: 620.7 ± 137 N | Dry | 135° | Semispherical loading stamp | Universal testing machine (Zwick Z010/TN2S) | 2 mm/min | 1054.8 ± 217.6 N | CAD/CAM: 228.8 N ± 172.5 N Prefabricated: 580.8 ± 92.6 N | Cemented: 833.5 ± 104.4 N Luted: 849.1 ± 158.3 N | Screw fracture and implant connection deformation | Internal hexagon fracture | Screw fracture and implant connection deformation |
Foong, J.K., et al., 2013 [22] | Not reported | Not reported | Not reported | Wet (artificial saline) | 30° | Rounded metal loading platen | Closed-loop servo hydraulics (MTS 810 Materials Test System) with graphite | Not reported | 269.6 ± 56.7 N | 139.8 ± 24.6 N | Not reported | Screw fracture and implant connection deformation | Internal hexagon fracture | Not reported |
Sen, N., et al., 2019 [23] | Not reported | Not reported | Not reported | Dry | 45° | Spherical loading stamp | Universal testing machine (Shimadzu AG-IS) | 1 mm/min | ICT: 1069 ± 182 N ITT: 926 ±197 N EHT: 873 ± 126 N | ICZ: 287 ± 63 N EHZ: 311 ± 45 N | ITZ: 568 ± 81 N | Abutment fracture and screw/abutment plastic deformation | Fracture below implant shoulder ICZ fracture above implant shoulder EHZ | Plastic deformation of screw and abutment |
Att, W., et al., 2012 [24] | 519 ± 85 N | Zr-1: 493 ± 73 N Zr-8: 488 ± 82 N Zr-18: 473 ± 68 N | Not reported | Dry | 130° | Semispherical loading stamp | Universal testing machine (Zwick Z010/TN2S) with 1 mm tin foil | 2 mm/min | 484 ± 144 N | Zr-1: 481± 66 N Zr-8: 479 ± 101 N Zr-18: 478 ± 102 N | Not reported | Not reported | Zr-1: primary mode unable to identify Zr-8: screw bending Zr-18: abutment fracture | Screw bending |
Saker, S., et al., 2016 [25] | Not reported | Not reported | Not reported | Dry | 30° | Universal indenter | Universal testing machine (Lloyd) with 1 mm tin foil | 1 mm/min | Ti15: 523.57 ± 19.71 N Ti0: 538.7 ± 24.77 N | Zr15:528.37 ± 24.57 N Zr0: 542.17 ± 21.64 N | Not reported | Not reported | Not reported–FDP broke first | Not reported–FDP broke first |
Sghaireen, M.G., 2015 [26] | 1012 ± 132.51 N | Not reported | Zr1: 498 ± 154.98 N (Alumina crown) Zr2: 274 ± 77.07 N (IPS Empress Esthetic crown) | Dry | 130° | Universal indenter | Universal testing machine (Instron 1195) | 1 mm/min | Not reported | Not reported | Not reported | Crown and abutment fracture | Not reported | Screw bending |
Elsayed, A., et al., 2017 [27] | 900 N | 218.5 ± 14.4 N | 900 N | Dry | 30° | Semispherical loading stamp | Universal testing machine (Germany 2050, Zuick/Roell) with 0.5 mm tin foil | 2 mm/min | Not reported | Not reported | Not reported | Screw bending | Internal hexagon fracture | Screw bending |
Karasan, D., et al., 2021 [28] | Not reported | Not reported | Not reported | Dry | 30° | Universal indenter | Universal testing machine (Germany 2050, Zuick/Roell) with 0.5 mm tin foil | 1 mm/min | Ti-1:601 ±41.51 N Ti-2: 664.5 ±37.59 N | Zr-1: 226 ± 26.45 N Zr-2: 551.2± 82.19 N | Not reported | Not reported | Internal hexagon fracture above implant shoulder | Plastic deformation of implant-abutment connection |
AlAmar, M., et al., 2020 [29] | Not reported | Not reported | Not reported | Dry | 135° | Universal indenter | Universal testing machine (not reported) | Not reported | 1095.5 ± 290.5 N | 740.2 ± 54.6 N | 1137.8 ± 20.5 N | Not reported | Not reported | Not reported |
Watanabe, S., et al., 2022 [30] | NB 0 mm: 1050 N ST 0 mm: 1100 N NB 3 mm: 600 N ST 3 mm: 800 N | NB 0 mm:459.9 ± 13.2 N ST 0 mm: 693.9 ± 37.2 N NB 3 mm: 383.8 ± 7.9 N ST 3 mm: 551.2 ± 15.8 N | NB 0 mm: 507.3 ±22 N ST 0 mm: 1142.7± 36.9 N NB 3 mm: 425.6 ± 30.3 N ST 3 mm: 827.9 ± 14.3 N | Dry | 30° | Universal indenter | Universal testing machine (Electro Puls E3000) | 0.5 mm/min | Not reported | Not reported | Not reported | Zirconia fracture near titanium base and titanium base deformation | Internal hexagon fracture | Screw bending |
Shabanpour, R., et al., 2015 [31] | Ti 3.4: 597.96 ± 54.35 N Ti 3.8: 500.59 ± 43.21 N Ti 4.5: 740.08 ± 32.12 N Ti 5.5: 1120.02 ± 52.01 N | Zr 3.8: 688.48 ± 109.47 N Zr 4.5: 838.99 ± 99.62 N ZrCAD 3.4: 286.41 ± 257.08 N ZrCAD 3.8: 451.21 ± 124.61 N ZrCAD 4.5: 725.04 ± 200.78 N ZrCAD 5.5: 989.54 ± 98.22 N | ZTi 3.4: 605.08 ± 63.64 N ZTi 3.8: 426.79 ± 86.29 N ZTi 4.5: 822.79 ± 231.09 N ZTi 5.5: 1286.06 ± 135.58 N | Dry | 30° | Universal indenter | Universal testing machine (Germany 2050, Zuick/Roell) with 0.1 mm Mylar film | 0.1 mm/min | Not reported | Not reported | Not reported | Screw fracture and body fracture | Internal hexagon fracture | Screw fracture |
Yang, J., et al., 2013 [32] | B30: 1035.1 ± 63.66 N B90: 735.83 ± 87.4 N | A30: 420.63 ± 29.22 N A90: 299.94 ± 11.94 N | Not reported | Dry | 90°, 30° | Universal indenter | Universal testing machine (AGS-J) | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported |
Cárdenas, R., et al., 2021 [33] | Not reported | Not reported | Not reported | wet (Artificial saline) | 30° | Universal indenter | Chewing Simulator (UANL FIME) | Not reported | 202 ± 16.9 N at 25.8 k ± 5.5 k cycles | 178 ± 16.9 N at 13.5 k ± 7 k cycles | 258 ± 25 N at 48.2 k ± 7.4 k cycles | Crown and abutment fracture | Internal hexagon fracture | Screw fracture and implant connection deformation |
Markarian, R.A., et al., 2020 [34] | Not reported | Not reported | Not reported | Dry | 30° | Universal indenter | Universal testing machine (Emic DL-2000) | 1 mm/min | 923 + 129 N | Not reported | 1005 ± 187 N | Not reported | Abutment fracture | Screw bending and Implant destruction |
1st Author Date | Simulator | Angle | Environment | Temperature | Force (N) | Number of Cycles | Frequency | Thermocycling |
---|---|---|---|---|---|---|---|---|
Elsayed, A., et al., 2018 [13] | Chewing Simulator (CS-4 SD Mechatronik GmbH) | 30° | Wet (distilled water) | room temperature | 49 N | 1.2 × 106 | 1.6 Hz | Not reported |
Atsü, S.S., et al., 2019 [19] | Chewing Simulator (CS-4 SD Mechatronik GmbH) | 30° | Wet (distilled water) | Room temperature | 100 N | 4.8 × 105 | 1.6 Hz | 5–55 ± 5 °C in distilled water for 30 s during 2000 cycles |
Giner, S., et al., 2021 [20] | electromagnetic testing machine (Shimadzu EMT series EMT-1kn-30; Shimadzu) | 30° | Dry | Room temperature | 40–400 N | 2 × 106 | 2 Hz | 5–55 ± 5 °C in artificial saliva for 20 s during 10 000 cycles |
Alsahhaf, A., et al., 2017 [21] | Artificial chewing simulator (Willytec) | 135° | Wet (distilled water) | 5–55 °C | 49 N | 1.2 × 106 | Not reported | 5–55 °C in distilled water for 60 s during cyclic loading |
Foong, J.K., et al., 2013 [22] | closed-loop servo hydraulics (MTS 810 Materials Test System) | 30° | Wet (artificial saline) | Room temperature | 100, 150, 200, 250, 300 and 400 N | 2 × 104 at each force threshold | 2–5 Hz | Not reported |
Sen, N., et al., 2019 [23] | occlusal loading-chewing simulator (Esetron Smart Robotechnologies) | 45° | Dry | 5–55 °C | 50 N | 1.2 × 106 | 2 Hz | 5–55 °C for 60 s 5000 times |
Att, W., et al., 2012 [24] | Artificial chewing simulator (Willytec) | 130° | Wet (distilled water) | 5–55 °C | 49 N | 1.2 × 106 | 1.6 Hz | 5–55 °C for 60 s during whole cyclic loading |
Saker, S., et al., 2016 [25] | Load cycling device (not reported) | 30° | Dry | Room temperature | 50 N | 6 × 105 | 2 Hz | 5–55 ± 2 °C for 20 s during 6000 cycles |
Sghaireen, M.G., 2015 [26] | not reported | Not reported | Dry | Not reported | Not reported | Not reported | Not reported | 5–55 °C for 30 s during 3000 cycles |
Elsayed, A., et al., 2017 [27] | not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported |
Karasan, D., et al., 2021 [28] | Artificial chewing simulator (C.S 4.8, Willytec) | 30° | wet | 5–55 °C | 49 N | 1.2 × 106 | 1.6 Hz | 5–55 °C for 60 s during whole cyclic loading |
AlAmar, M., et al., 2020 [29] | Artificial chewing simulator (not reported) | 135° | Dry | Room temperature | Not reported | 2.5 × 105 | Not reported | Not reported |
Watanabe, S., et al., 2022 [30] | not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported |
Shabanpour, R., et al., 2015 [31] | not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported |
Yang, J., et al., 2013 [32] | not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported | Not reported |
Cárdenas, R., et al., 2021 [33] | Chewing Simulator (UANL FIME) | 30° | Wet (artificial saline) | room temperature | 88, 170, 210, 250, 290 N | 1 × 105 | 1.4 Hz | Not reported |
Markarian, R.A., et al., 2020 [34] | Load cycling device (Bicycle Biopdi) | 30° | Wet (artificial saline) | 37 °C | 100 N | 1 × 106 | 2 Hz | Not reported |
Implant Diameter | 3.3–3.8 mm without Fatigue Testing | 3.3–3.8 mm with Fatigue Testing | 4–4.5 mm without Fatigue Testing | 4–4.5 mm with Fatigue Testing | 5–5.5 mm without Fatigue Testing |
---|---|---|---|---|---|
Average material fracture strength | Titanium: 636.78 ± 89.52 N One-piece: 483.2 ± 138.79 N Two-piece: 578.19 ± 106.81 N | Titanium: 800.07 ± 134.70 N One-piece: 524.07 ± 73.18 N Two-piece: 861.08 ± 101.05 N | Titanium: 849.20 ± 80.14 N One-piece: 503.83 ± 54.42 N Two-piece: 674.79 ± 80.95 N | Titanium: 805.06 ± 122.44 N One-piece: 376.40 ± 69.38 N Two-piece: 839.00 ± 134.00 N | Titanium: 963.65 ± 67.69 N One-piece: 570.04 ± 46.46 N Two-piece: 1286.06 ± 135.58 N |
Fracture resistance vs. titanium control (significant if p < 0.05) | One-piece zirconia: 0.096734 Two-piece zirconia: 0.688568 | One-piece zirconia: 0.098033 Two-piece zirconia: 0.89824 | One-piece zirconia: 0.000371 Two-piece zirconia: 0.153244 | One-piece zirconia: 0.000181 Two-piece zirconia: 0.7573 | One-piece zirconia: 0.018037 Two-piece zirconia: 0.000987 |
Fracture resistance one-piece vs. two-piece zirconia (significant if p < 0.05) | 0.020068 | 0.07323 | 0.11934 | 0.000191 | 0.000275 |
Titanium before Fatigue | Titanium after Fatigue | One-Piece Zirconia before Fatigue | One-Piece Zirconia after Fatigue | Two-Piece Zirconia before Fatigue | Two-Piece Zirconia after Fatigue | |
---|---|---|---|---|---|---|
Implant 3–3.8 mm vs. 4–4.5 mm (significant if p < 0.05) | 0.049276 | 0.970114 | 0.8222 | 0.124293 | 0.49341 | 0.865513. |
Implant 3–3.8 mm vs. 5–5.5 mm (significant if p < 0.05) | 0.003834 | No data | 0.53225 | No data | <0.00001 | No data |
Implant 4–4.5 mm vs. 5–5.5 mm (significant if p < 0.05) | 0.279987 | No data | 0.549308 | No data | 0.000762 | No data |
Material | Titanium | One-Piece Zirconia | Two-Piece Zirconia |
---|---|---|---|
p-value with vs. without fatigue testing (significant if p < 0.05) | 3.3–3.8 mm: 0.2507 4–4.5 mm: 0.648392 5–5.5 mm: No data | 3.3–3.8 mm: 0.707122 4–4.5 mm: 0.10327 5–5.5 mm: No data | 3.3–3.8 mm: 0.014531 4–4.5 mm: 0.280685 5–5.5 mm: No data |
Titanium without Aging | One-Piece Zirconia without Aging | Two-Piece Zirconia without Aging | Titanium with Aging | One-Piece Zirconia with Aging | Two-Piece Zirconia with Aging | |
---|---|---|---|---|---|---|
Fracture (N) | 823.03 ± 80.14 | 525.09 ± 80.29 | 692.09 ± 94.12 | 803.14 ± 127.88 | 412.24 ± 67.40 | 851.62 ± 112.03 |
Fracture with aging below 106 (N) | No data | No data | No data | 736.39 ± 113.97 | 603.58 ± 33.60 | 880.87 ± 70.75 |
Fracture with aging above 106 (N) | No data | No data | No data | 832.81 ± 134.34 | 382.08 ± 83.42 | 839.92 ± 132.68 |
Titanium: | One-Piece Zirconia: | Two-Piece Zirconia: | |
---|---|---|---|
p-value compared with titanium without aging (significant if p < 0.05) | 0.000327 | 0.197881 | |
p-value compared with titanium with aging (significant if p < 0.05) | 0.000028 | 0.633917 | |
p-value one-piece compared with two-piece zirconia with aging (significant if p < 0.05) | 0.000065 | ||
p-value one-piece compared with two-piece zirconia without aging (significant if p < 0.05) | 0.067789 | ||
p-value non aged compared with aged abutments (significant if p < 0.05) | 0.434193 | 0.008352 | 0.720565 |
Titanium: (N) | One-Piece Zirconia: (N) | Two-Piece Zirconia: (N) | |
---|---|---|---|
30° before fatigue | 844.38 ± 49.07 | 558.97 ± 83.96 | 771.58 ± 77.51 |
30° after fatigue | 705.51 ± 62.25 | 409.15 ± 38.71 | 857.64 ± 154.00 |
45° after fatigue | 956.00 ± 168.33 | 299.00 ± 54.00 | 568.00 ± 81.00 |
90° before fatigue | 735.83 ± 87.4 | 299.94 ± 11.94 | No data |
130° before fatigue | 765.50 ± 108.76 | 484.67 ± 74.33 | 386.00 ± 116.03 |
130° after fatigue | 484.00 ± 144.00 | 479.33 ± 89.67 | No data |
135° before fatugue | 811.80 ± 171.00 | 495.00 ± 101.40 | 640.45 ± 138.65 |
135° after fatigue | 1075.15 ± 254.05 | 516.60 ± 106.57 | 940.13 ± 94.40 |
30° before Fatigue | 30° after Fatigue | 130° before Fatigue | 135° after Fatigue | |
---|---|---|---|---|
p-value titanium vs. one-piece zirconia (significant if p < 0.05) | 0.009012 | 0.014695 | 0.006987 | 0.000148 |
p-value titanium vs. two-piece zirconia (significant if p < 0.05) | 0.56445 | 0.130836 | 0.00219 | 0.038457 |
p-value one-piece vs. two-piece zirconia (significant if p < 0.05) | 0.086192 | 0.002493 | 0.024151 | 0.002681 |
30° | 130° | |
---|---|---|
Titanium abutment p-value before vs. after fatigue (significant if p < 0.05) | 0.192624 | 0.006869 |
One-piece abutment zirconia p-value before vs. after fatigue (significant if p < 0.05) | 0.79677 | 0.10928 |
Two-piece abutment zirocnia p-value before vs. after fatigue (significant if p < 0.05) | 0.571616 | No data |
Titanium: | One-Piece Zirconia: | Two-Piece Zirconia: | |
---|---|---|---|
Fracture (N) | 237.2 ± 36.8 | 158.9 ± 20.75 | 299 ± 25 |
p-value compared with titanium control (significant if p < 0.05) | 0.006273 | <0.00001 | |
p-value one-piece compared with two-piece zirconia (significant if p < 0.05) | 0.000217 |
Titanium: | One-Piece Zirconia: | Two-Piece Zirconia: | |
---|---|---|---|
Ceramic (N) | 818.58 ± 114.7 | 417.14 ± 38.55 | 490.98 ± 108.51 |
Metal (N) | 794.29 ± 110.18 | 459.96 ± 65.17 | 762.52 ± 61.03 |
No restoration (N) | 843.51 ± 94.03 | 644.54 ± 117.25 | 855.7 ± 107.42 |
p-value different crown and same abutment material (significant if p< 0.05) | 0.914465 | 0.064686 | 0.115534 |
p-value ceramic compared with titanium (significant if p< 0.05) | 0.00420 | 0.01687 | |
p-value metal compared with titanium (significant if p< 0.05) | 0.01298 | 0.95775 | |
p-value no restoration compared with titanium (significant if p< 0.05) | 0.38550 | 0.99624 | |
p-value ceramic one-piece zirconia compared with two-piece zirconia (significant if p< 0.05) | 0.75641 | ||
p-value metal one-piece zirconia compared with two-piece zirconia (significant if p< 0.05) | 0.02428 | ||
p-value no crown one-piece zirconia compared with two-piece zirconia (significant if p< 0.05) | 0.34404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielewski, M.; Dąbrowski, W.; Ordyniec-Kwaśnica, I. The Fracture Resistance Comparison between Titanium and Zirconia Implant Abutments with and without Ageing: Systematic Review and Meta-Analysis. Dent. J. 2024, 12, 274. https://doi.org/10.3390/dj12090274
Chmielewski M, Dąbrowski W, Ordyniec-Kwaśnica I. The Fracture Resistance Comparison between Titanium and Zirconia Implant Abutments with and without Ageing: Systematic Review and Meta-Analysis. Dentistry Journal. 2024; 12(9):274. https://doi.org/10.3390/dj12090274
Chicago/Turabian StyleChmielewski, Marek, Wojciech Dąbrowski, and Iwona Ordyniec-Kwaśnica. 2024. "The Fracture Resistance Comparison between Titanium and Zirconia Implant Abutments with and without Ageing: Systematic Review and Meta-Analysis" Dentistry Journal 12, no. 9: 274. https://doi.org/10.3390/dj12090274
APA StyleChmielewski, M., Dąbrowski, W., & Ordyniec-Kwaśnica, I. (2024). The Fracture Resistance Comparison between Titanium and Zirconia Implant Abutments with and without Ageing: Systematic Review and Meta-Analysis. Dentistry Journal, 12(9), 274. https://doi.org/10.3390/dj12090274