Aqueous Singlet Oxygen Sensitization of Porphyrin-Embedded Silica Particles with Long-Term Stability
Abstract
1. Introduction
2. Results
2.1. Preparation and Characterization of Particles
2.2. Effect of Micellar Structures on PdOEP Aggregation
2.3. 1O2 Sensitization Activity
3. Materials and Methods
3.1. Materials
3.2. Preparation of PdOEP-Embedded Silica Particles
3.3. Characterization of Silica Particles
3.4. Stability of Silica Particles
3.5. Measurement of 1O2 Quantum Yield
3.6. Two-Photon Excitation Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajora, M.A.; Lou, J.W.H.; Zheng, G. Advancing Porphyrin’s Biomedical Utility via Supramolecular Chemistry. Chem. Soc. Rev. 2017, 46, 6433–6469. [Google Scholar] [CrossRef]
- Tian, J.; Huang, B.; Nawaz, M.H.; Zhang, W. Recent Advances of Multi-Dimensional Porphyrin-Based Functional Materials in Photodynamic Therapy. Coord. Chem. Rev. 2020, 420, 213410. [Google Scholar] [CrossRef]
- Jang, W.; Nishiyama, N.; Zhang, G.; Harada, A.; Jiang, D.; Kawauchi, S.; Morimoto, Y.; Kikuchi, M.; Koyama, H.; Aida, T.; et al. Supramolecular Nanocarrier of Anionic Dendrimer Porphyrins with Cationic Block Copolymers Modified with Polyethylene Glycol to Enhance Intracellular Photodynamic Efficacy. Angew. Chem. Int. Ed. 2005, 44, 419–423. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, R.; Kuang, F.; Hui, T.; Fu, C.; Zhang, L.; Zhou, C.; Qiu, M.; Yue, B. Schottky Heterojunction CeO2@MXene Nanosheets with Synergistic Type I and Type II PDT for Anti-Osteosarcoma. J. Mater. Chem. B 2024, 12, 1816–1825. [Google Scholar] [CrossRef]
- Luciano, M.; Brückner, C. Modifications of Porphyrins and Hydroporphyrins for Their Solubilization in Aqueous Media. Molecules 2017, 22, 980. [Google Scholar] [CrossRef]
- Chen, J.; Fan, T.; Xie, Z.; Zeng, Q.; Xue, P.; Zheng, T.; Chen, Y.; Luo, X.; Zhang, H. Advances in Nanomaterials for Photodynamic Therapy Applications: Status and Challenges. Biomaterials 2020, 237, 119827. [Google Scholar] [CrossRef]
- Ohishi, Y.; Ichikawa, T.; Yokoyama, S.; Yamashita, J.; Iwamura, M.; Nozaki, K.; Zhou, Y.; Chiba, J.; Inouye, M. Water-Soluble Rotaxane-Type Porphyrin Dyes as a Highly Membrane-Permeable and Durable Photosensitizer Suitable for Photodynamic Therapy. ACS Appl. Bio Mater. 2024, 7, 6656–6664. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, Y.; Heitmüller, J.; Sieck, C.; Prüfer, A.; Ralle, P.; Steffen, A.; Henke, P.; Ogilby, P.R.; Marder, T.B.; et al. Ultrafast Photophysics of Para-Substituted 2,5-Bis(Arylethynyl) Rhodacyclopentadienes: Thermally Activated Intersystem Crossing. Chem. Sci. 2024, 15, 14746–14756. [Google Scholar] [CrossRef]
- Shi, S.; Lin, L.; Hu, Z.; Gu, L.; Zhang, Y. Study on the Stability of Bio-Oil Modified Prime Coat Oil Based on Molecular Dynamics. Materials 2022, 15, 6737. [Google Scholar] [CrossRef] [PubMed]
- Chuang, K.-W.; Liu, Y.-C.; Balaji, R.; Chiu, Y.-C.; Yu, J.; Liao, Y.-C. Enhancing Stability of High-Concentration β-Tricalcium Phosphate Suspension for Biomedical Application. Materials 2022, 16, 228. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, J. Synthesis of Amphiphilic Block Copolymer and Its Application in Pigment-Based Ink. Materials 2024, 17, 330. [Google Scholar] [CrossRef]
- Jo, J.H.; Heo, H.S.; Lee, K. Assessing Stability of Nanocomposites Containing Quantum Dot/Silica Hybrid Particles with Different Morphologies at High Temperature and Humidity. Chem. Mater. 2020, 32, 10538–10544. [Google Scholar] [CrossRef]
- Wu, B.; Huang, W.-Q.; Nie, X.; Zhang, Z.; Chen, G.; Wang, H.-L.; Wang, F.; Ding, S.-G.; Hao, Z.-Y.; You, Y.-Z. The Effect of Topology of PEG Chain on the Stability of Micelles in Brine and Serum. Colloid Interface Sci. Commun. 2021, 41, 100386. [Google Scholar] [CrossRef]
- Kanezashi, M.; Sano, M.; Yoshioka, T.; Tsuru, T. Extremely Thin Pd–Silica Mixed-Matrix Membranes with Nano-Dispersion for Improved Hydrogen Permeability. Chem. Commun. 2010, 46, 6171–6173. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Wang, M.; Hu, Y.; Guo, Z.; Yang, W. Cetyltrimethylammonium Bromide Promoted Dispersing and Incorporation of Curcumin into Silica Particles in Alkaline Ethanol/Water Mixture. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126789. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, Z.; Wang, Y.; Wang, D.; Han, M.-Y.; Yang, W. Phase Engineering of Hydrophobic Meso-Environments in Silica Particles for Technical Performance Enrichment. Langmuir 2018, 34, 7428–7435. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, J.; Liu, C.; Chen, R.; Jiang, T.; Hailili, Y.; Bahetibieke, T.; Tang, X.; Wang, M. Preparation of Ca-Mg Double-Doped Mesoporous Silica Nanoparticles and Their Drug-Loading and Drug-Releasing Properties. Inorganics 2025, 13, 12. [Google Scholar] [CrossRef]
- Trucillo, P. Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes 2022, 10, 1094. [Google Scholar] [CrossRef]
- Croissant, J.G.; Guardado-Alvarez, T.M. Photocracking Silica: Tuning the Plasmonic Photothermal Degradation of Mesoporous Silica Encapsulating Gold Nanoparticles for Cargo Release. Inorganics 2019, 7, 72. [Google Scholar] [CrossRef]
- Shi, Y.-L.; Asefa, T. Tailored Core−Shell−Shell Nanostructures: Sandwiching Gold Nanoparticles between Silica Cores and Tunable Silica Shells. Langmuir 2007, 23, 9455–9462. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-D.; Shen, Z.-X.; Sang, T.; Cheng, X.-B.; Li, M.-F.; Chen, L.-Y.; Wang, Z.-S. Preparation of Spherical Silica Particles by St? Ber Process with High Concentration of Tetra-Ethyl-Orthosilicate. J. Colloid Interface Sci. 2010, 341, 23–29. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhen, W.; Gao, J.; Gu, Y.; Hong, B.; Han, X.; Zhao, S.; Pera-Titus, M. Enhanced Biphasic Reactions in Amphiphilic Silica Mesopores. J. Phys. Chem. C 2024, 128, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Nichterwitz, M.; Grätz, S.; Nickel, W.; Borchardt, L. Solvent-Free Hierarchization of Zeolites by Carbochlorination. J. Mater. Chem. A 2017, 5, 221–229. [Google Scholar] [CrossRef]
- Saxena, S.K.; Viswanadham, N.; Sharma, T. Breakthrough Mesopore Creation in BEA and Its Enhanced Catalytic Performance in Solvent-Free Liquid Phase Tert-Butylation of Phenol. J. Mater. Chem. A 2014, 2, 2487–2490. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zha, L.; Koskela, S.; Berglund, L.A.; Zhou, Q. Wood Xerogel for Fabrication of High-Performance Transparent Wood. Nat. Commun. 2023, 14, 2827. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ding, Z. Oxidation-Induced and Hydrothermal-Assisted Template-Free Synthesis of Mesoporous CeO2 for Adsorption of Acid Orange 7. Materials 2022, 15, 5209. [Google Scholar] [CrossRef]
- Rangasamy, S.; Bandini, E.; Venturini, A.; Bozzuto, G.; Migani, S.; Calcabrini, A.; Sennato, S.; Zuffa, C.; Maini, L.; Brion, A.; et al. Novel Azole-Modified Porphyrins for Mitochondria-Targeted Photodynamic Therapy. Molecules 2025, 30, 2688. [Google Scholar] [CrossRef]
- Xu, J.; Bonneviot, L.; Guari, Y.; Monnereau, C.; Zhang, K.; Poater, A.; Rodríguez-Pizarro, M.; Albela, B. Matrix Effect on Singlet Oxygen Generation Using Methylene Blue as Photosensitizer. Inorganics 2024, 12, 155. [Google Scholar] [CrossRef]
- Gorski, A.; Knyukshto, V.; Zenkevich, E.; Starukhin, A.; Kijak, M.; Solarski, J.; Semeikin, A.; Lyubimova, T. Temperature Dependent Steric Hindrance Effects in Triplet State Relaxation of Meso-Phenyl-Substituted Pd-Octaethylporphyrins. J. Photochem. Photobiol. A Chem. 2018, 354, 101–111. [Google Scholar] [CrossRef]
- Asaro, F.; Benedetti, A.; Freris, I.; Riello, P.; Savko, N. Evolution of the Nonionic Inverse Microemulsion−Acid−TEOS System during the Synthesis of Nanosized Silica via the Sol−Gel Process. Langmuir 2010, 26, 12917–12925. [Google Scholar] [CrossRef]
- Aryal, M.; Liakopoulou-Kyriakides, M. Biodegradation and Kinetics of Phenanthrene and Pyrene in the Presence of Nonionic Surfactants by Arthrobacter Strain Sphe3. Water Air Soil Pollut. 2013, 224, 1426. [Google Scholar] [CrossRef]
- Diallo, M.S.; Abriola, L.M.; Weber, W.J. Solubilization of Nonaqueous Phase Liquid Hydrocarbons in Micellar Solutions of Dodecyl Alcohol Ethoxylates. Environ. Sci. Technol. 1994, 28, 1829–1837. [Google Scholar] [CrossRef]
- Aramaki, K.; Hayashi, T.; Katsuragi, T.; Ishitobi, M.; Kunieda, H. Effect of Adding an Amphiphilic Solubilization Improver, Sucrose Distearate, on the Solubilization Capacity of Nonionic Microemulsions. J. Colloid Interface Sci. 2001, 236, 14–19. [Google Scholar] [CrossRef]
- Qiu, M.; Duo, Y.; Liang, W.; Yang, Y.; Zhang, B.; Xie, Z.; Yang, X.; Wang, G.; Xie, N.; Nie, G.; et al. Nanopoxia: Targeting Cancer Hypoxia by Antimonene-Based Nanoplatform for Precision Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2104607. [Google Scholar] [CrossRef]
- Jin, C.; Liu, X.; Bai, H.; Wang, R.; Tan, J.; Peng, X.; Tan, W. Engineering Stability-Tunable DNA Micelles Using Photocontrollable Dissociation of an Intermolecular G-Quadruplex. ACS Nano 2017, 11, 12087–12093. [Google Scholar] [CrossRef]
- Sha, Y.; Guo, Z.; Han, Y.; Xue, Z.; Li, M.; Wan, Y.; Yang, W.; Ma, X. Excited-State Proton Transfer from Embedded Photoacids to Silanols on Mesostructured Surfaces: Role of Structural Heterogeneity. J. Phys. Chem. C 2023, 127, 14458–14467. [Google Scholar] [CrossRef]
- Guo, Z.; Sha, Y.; Wang, M.; Li, M.; Wan, Y.; Ma, X.; Yang, W. Photoacid-Loaded Nanopores of Hollow Mesoporous Organosilica Capsules for Fluorescent Humidity Sensing. ACS Appl. Nano Mater. 2022, 5, 10786–10794. [Google Scholar] [CrossRef]
- Melik-Nubarov, N.S.; Kozlov, M.Y. Evaluation of Partition Coefficients of Low Molecular Weight Solutes between Water and Micelles of Block Copolymer of Ethylene Oxide Based on Dialysis Kinetics and Fluorescence Spectroscopy. Colloid Polym. Sci. 1998, 276, 381–387. [Google Scholar] [CrossRef]
- Galarneau, A.; Cangiotti, M.; Di Renzo, F.; Fajula, F.; Ottaviani, M.F. Synthesis of Micelle Templated Silico−Aluminas with Different Alumina Contents. J. Phys. Chem. B 2006, 110, 4058–4065. [Google Scholar] [CrossRef]
- Chapman, M. Rhodamine 6G Structural Changes in Water/Ethanol Mixed Solvent. J. Fluoresc. 2018, 28, 1431–1437. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Julian, A.M.; Coates, C.J.; Coté, G.L. Detection of Differences in Oligonucleotide-Influenced Aggregation of Colloidal Gold Nanoparticles Using Absorption Spectroscopy. J. Biomed. Opt. 2004, 9, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Ke, D.; Wang, X.; Yang, Q.; Niu, Y.; Chai, S.; Chen, Z.; An, X.; Shen, W. Spectrometric Study on the Interaction of Dodecyltrimethylammonium Bromide with Curcumin. Langmuir 2011, 27, 14112–14117. [Google Scholar] [CrossRef]
- Kim, K.; Kim, C.; Byun, Y. Preparation of a Dipalmitoylphosphatidylcholine/Cholesterol Langmuir−Blodgett Monolayer That Suppresses Protein Adsorption. Langmuir 2001, 17, 5066–5070. [Google Scholar] [CrossRef]
- Mandal, S.; Banerjee, C.; Ghosh, S.; Kuchlyan, J.; Sarkar, N. Modulation of the Photophysical Properties of Curcumin in Nonionic Surfactant (Tween-20) Forming Micelles and Niosomes: A Comparative Study of Different Microenvironments. J. Phys. Chem. B 2013, 117, 6957–6968. [Google Scholar] [CrossRef]
- Hui, T.; Gao, M.; Kuang, F.; Liu, Y.; Zheng, B.; Yu, L.; Qiu, M.; Yue, B. Two-Dimensional Ti3C2@Porphyridium Nanobiohybrids with Self-Oxygenation Capability for Enhanced Hypoxic Photodynamic Therapy. ACS Appl. Nano Mater. 2024, 7, 1919–1928. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, P.; Sha, Y.; Gao, Y.; Yu, G.; Lv, H.-H.; Wang, Y.; Han, Y.; Yang, W.; Wang, X.-Y.; et al. Resolving the Vibronic Effect on Dark Processes of Conjugation Extended Diketopyrrolopyrrole with Red/NIR Emitting. J. Phys. Chem. Lett. 2025, 16, 4615–4625. [Google Scholar] [CrossRef]
- Lesaint, C.; Lebeau, B.; Marichal, C.; Patarin, J.; Zana, R. Fluorescence Probing Investigation of the Mechanism of Formation of MSU-Type Mesoporous Silica Prepared in Fluoride Medium. Langmuir 2005, 21, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Hua, L.; Guo, Z.; Sun, L. One-Pot Green Synthesis of Doxorubicin Loaded-Silica Nanoparticles for in Vivo Cancer Therapy. Mater. Sci. Eng. C 2018, 90, 257–263. [Google Scholar] [CrossRef]
- Lin, H.; Shen, Y.; Chen, D.; Lin, L.; Wilson, B.C.; Li, B.; Xie, S. Feasibility Study on Quantitative Measurements of Singlet Oxygen Generation Using Singlet Oxygen Sensor Green. J. Fluoresc. 2013, 23, 41–47. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, P.; Guo, Z.; Sha, Y.; Li, Y.; Zhang, X.; Han, Y.; Yang, W.; Ma, X. Aqueous Singlet Oxygen Sensitization of Porphyrin-Embedded Silica Particles with Long-Term Stability. Inorganics 2025, 13, 279. https://doi.org/10.3390/inorganics13090279
Zhu P, Guo Z, Sha Y, Li Y, Zhang X, Han Y, Yang W, Ma X. Aqueous Singlet Oxygen Sensitization of Porphyrin-Embedded Silica Particles with Long-Term Stability. Inorganics. 2025; 13(9):279. https://doi.org/10.3390/inorganics13090279
Chicago/Turabian StyleZhu, Pengcheng, Zilong Guo, Yulin Sha, Yonghang Li, Xiaoyu Zhang, Yandong Han, Wensheng Yang, and Xiaonan Ma. 2025. "Aqueous Singlet Oxygen Sensitization of Porphyrin-Embedded Silica Particles with Long-Term Stability" Inorganics 13, no. 9: 279. https://doi.org/10.3390/inorganics13090279
APA StyleZhu, P., Guo, Z., Sha, Y., Li, Y., Zhang, X., Han, Y., Yang, W., & Ma, X. (2025). Aqueous Singlet Oxygen Sensitization of Porphyrin-Embedded Silica Particles with Long-Term Stability. Inorganics, 13(9), 279. https://doi.org/10.3390/inorganics13090279