Unveiling Electrochemical Frontiers: Enhanced Hydrazine Sensing with Na3[Fe(CN)5(PZT)] Modified Electrodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of Modified Electrodes with the Complex Na3[Fe(CN)5PZT]
2.2. Synthesis, Characterization, and Electrochemical Properties of Ruthenium-Containing Prussian Blue Analogues Derived from the Na3[Fe(CN)5(PZT)] Complex
3. Materials and Methods
3.1. Experimental Details
3.2. Synthesis of the Na3[Fe(CN)5(PZT)] Complex
3.3. Electrochemical Studies and Electrode Modification
3.4. Application in Hydrazine Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordy, W.; Williams, D. The Infrared Absorption of Cyanides and Thiocyanates. J. Chem. Phys. 1935, 3, 664–667. [Google Scholar] [CrossRef]
- Concina, I. An Old Material for a New World: Prussian Blue and Its Analogues as Catalysts for Modern Needs. Inorganics 2024, 12, 124. [Google Scholar] [CrossRef]
- Toma, H.E.; Malin, J.M. Properties and Reactivity of Some Pentacyanoferrate(II) Complexes of Aromatic Nitrogen Heterocycles. Inorg. Chem. 1973, 12, 1039–1045. [Google Scholar] [CrossRef]
- Khasevani, S.G.; Nikjoo, D.; Ojwang, D.O.; Nodari, L.; Sarmad, S.; Mikkola, J.P.; Rigoni, F.; Concina, I. The Beauty of Being Complex: Prussian Blue Analogues as Selective Catalysts and Photocatalysts in the Degradation of Ciprofloxacin. J. Catal. 2022, 410, 307–319. [Google Scholar] [CrossRef]
- Gao, M.; Xiao, W.; Miao, L.; Yang, Z.; Liang, W.; Ao, T.; Yang, Q.; Chen, W. Prussian Blue and Its Analogs: A Robust Platform for Efficient Capacitive Deionization. Desalination 2024, 574, 117278. [Google Scholar] [CrossRef]
- Ren, K.R.; Xu, G.N.; Yu, Z.; Liu, C.Z.; Wang, P.F.; Zhang, J.H.; He, Y.B.; Yi, T.F. Towards Prussian Blue Analogues-Based Advanced Aqueous Batteries: From Facing Critical Challenges to Feasible Solutions. Coord. Chem. Rev. 2024, 510, 215833. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, J.; Zhao, H.; Li, J.; Zhang, G.; Zhang, D.; Guo, X.; Gao, H.; Wang, Y.; Chen, J.; et al. Prussian Blue Analogues for Sodium-Ion Battery Cathodes: A Review of Mechanistic Insights, Current Challenges, and Future Pathways. Small 2024, 20, 2401957. [Google Scholar] [CrossRef]
- Kraft, A. On the Discovery and History of Prussian Blue. Bull. Hist. Chem. 2008, 33, 61–67. [Google Scholar]
- Shi, J.; Du, M.; Zhang, G.; Shi, Y.; Su, Y.; Liu, X.; Pang, H. Structural Properties, Design Strategies, and Morphology Control of Micro/Nanoscaled Prussian Blue and Its Analogues. Mater. Today Chem. 2024, 38, 102063. [Google Scholar] [CrossRef]
- Busquets, M.A.; Estelrich, J. Prussian Blue Nanoparticles: Synthesis, Surface Modification, and Biomedical Applications. Drug Discov. Today 2020, 25, 1431–1443. [Google Scholar] [CrossRef]
- Samain, L.; Grandjean, F.; Long, G.J.; Martinetto, P.; Bordet, P.; Sanyova, J.; Strivay, D. Synthesis and Fading of Eighteenth-Century Prussian Blue Pigments: A Combined Study by Spectroscopic and Diffractive Techniques Using Laboratory and Synchrotron Radiation Sources. J. Synchrotron Radiat. 2013, 20, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Yu, G.; Wang, J. Selective Adsorption of Cesium (I) from Water by Prussian Blue Analogues Anchored on 3D Reduced Graphene Oxide Aerogel. Sci. Total Environ. 2021, 761, 143286. [Google Scholar] [CrossRef] [PubMed]
- Kotilainen, A.T.; Kotilainen, M.M.; Vartti, V.P.; Hutri, K.L.; Virtasalo, J.J. Chernobyl Still with Us: 137Caesium Activity Contents in Seabed Sediments from the Gulf of Bothnia, Northern Baltic Sea. Mar. Pollut. Bull. 2021, 172, 112924. [Google Scholar] [CrossRef] [PubMed]
- Faustino, P.J.; Yang, Y.; Progar, J.J.; Brownell, C.R.; Sadrieh, N.; May, J.C.; Leutzinger, E.; Place, D.A.; Duffy, E.P.; Houn, F.; et al. Quantitative Determination of Cesium Binding to Ferric Hexacyanoferrate: Prussian Blue. J. Pharm. Biomed. Anal. 2008, 47, 114–125. [Google Scholar] [CrossRef]
- Jung, Y.; Choi, U.S.; Ko, Y.G. Securely Anchored Prussian Blue Nanocrystals on the Surface of Porous PAAm Sphere for High and Selective Cesium Removal. J. Hazard. Mater. 2021, 420, 126654. [Google Scholar] [CrossRef]
- Neff, V.D. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. J. Electrochem. Soc. 1978, 125, 886–887. [Google Scholar] [CrossRef]
- Shen, Q.; Jiang, J.; Fan, M.; Liu, S.; Wang, L.; Fan, Q.; Huang, W. Prussian Blue Hollow Nanostructures: Sacrificial Template Synthesis and Application in Hydrogen Peroxide Sensing. J. Electroanal. Chem. 2014, 712, 132–138. [Google Scholar] [CrossRef]
- Itaya, K.; Nobuyoshi, S.; Isamu, U. Catalysis of the Reduction of Molecular Oxygen to Water at Prussian Blue Modified Electrodes. J. Am. Chem. Soc. 1984, 106, 3423–3429. [Google Scholar] [CrossRef]
- Karyakin, A.A. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis 2001, 13, 813–819. [Google Scholar] [CrossRef]
- Du, G.; Pang, H. Recent Advancements in Prussian Blue Analogues: Preparation and Application in Batteries. Energy Storage Mater. 2021, 36, 387–408. [Google Scholar] [CrossRef]
- Sassi, M.; Salamone, M.M.; Ruffo, R.; Patriarca, G.E.; Mari, C.M.; Pagani, G.A.; Posset, U.; Beverina, L. Organic Electrochromic Polymers: State-of-the-Art Neutral Tint Multichromophoric Polymers for High-Contrast See-Through Electrochromic Devices (Adv. Funct. Mater. 29/2016). Adv. Funct. Mater. 2016, 26, 5239. [Google Scholar] [CrossRef]
- Ulusoy Ghobadi, T.G.; Ozbay, E.; Karadas, F. How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies. Chem.—A Eur. J. 2021, 27, 3638–3649. [Google Scholar] [CrossRef] [PubMed]
- Braterman, P. Reactions of Coordinated Ligands: Volume 2; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Zeng, W.; Su, J.; Wang, Y.; Shou, M.; Qian, J.; Kai, G. Prussian Blue and Its Analogues: From Properties to Biological Applications. ChemistrySelect 2023, 8, e202302655. [Google Scholar] [CrossRef]
- Matsumoto, F.; Temperini, M.; Toma, H.E. Electrochemical and Spectroscopic Investigation of Prussian Blue Modified Electrodes Containing Isonicotinamide. Electrochim. Acta 1994, 39, 391–395. [Google Scholar] [CrossRef]
- Wang, L.C.; Chiou, P.Y.; Hsu, Y.P.; Lee, C.L.; Hung, C.H.; Wu, Y.H.; Wang, W.J.; Hsieh, G.L.; Chen, Y.C.; Chang, L.C.; et al. Prussian Blue Analog with Separated Active Sites to Catalyze Water Driven Enhanced Catalytic Treatments. Nat. Commun. 2023, 14, 1–16. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Sun, R.; Li, S.S.; Guo, Y.; Shen, W.; Wang, J.; Deepak, F.L.; Li, Y.; Wang, Z. Engineering Surface Electron and Active Site at Electrochemical Sensing Interface of CN Vacancy-Mediated Prussian Blue Analogue for Analysis of Heavy Metal Ions. Appl. Surf. Sci. 2021, 564, 150131. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, S. Multifunctional Prussian Blue Analogue Magnets: Emerging Opportunities. Appl. Mater. Today 2021, 22, 100886. [Google Scholar] [CrossRef]
- Bernhardt, P.; Bozoglián, F.; Macpherson, B.P.; Martínez, M. Molecular Mixed-Valence Cyanide Bridged CoIII–FeII Complexes. Coord. Chem. Rev. 2005, 249, 1902–1916. [Google Scholar] [CrossRef]
- De Tacconi, N.R.; Rajeshwar, K.; Lezna, R.O. Metal Hexacyanoferrates: Electrosynthesis, in Situ Characterization, and Applications. Chem. Mater. 2003, 15, 3046–3062. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Lian, Y.; Song, S.; Liu, Z.; Qi, G.C. Electrochemical Preparation of Cobalt Hexacyanoferrate Nanoparticles under the Synergic Action of EDTA and Overoxidized Polypyrrole Film. Electrochim. Acta 2012, 85, 650–658. [Google Scholar] [CrossRef]
- Fenga, P.G.; Stradiotto, N.R. Study of Zinc Hexacyanoferrate-Modified Platinum Electrodes Using Electrochemical Quartz Crystal Microbalance. J. Solid State Electrochem. 2011, 15, 1279–1286. [Google Scholar] [CrossRef]
- Yang, C.; Wang, C.; Wu, J.; Xia, X. Mechanism Investigation of Prussian Blue Electrochemically Deposited from a Solution Containing Single Component of Ferricyanide. Electrochim. Acta 2006, 51, 4019–4023. [Google Scholar] [CrossRef]
- Li, H.X.; Ban, Y.P.; Gao, Q.; Wu, H. Di Hydrogen Peroxide Detection with N-Silicon Photoelectrodes Modified by Nickel Hexacyanoferrate Films. Sci. Adv. Mater. 2012, 4, 935–940. [Google Scholar] [CrossRef]
- Lin, K.C.; Hong, C.P.; Chen, S.M. Electrocatalytic Oxidation of Alcohols, Sulfides and Hydrogen Peroxide Based on Hybrid Composite of Ruthenium Hexacyanoferrate and Multi-Walled Carbon Nanotubes. Int. J. Electrochem. Sci. 2012, 7, 11426–11443. [Google Scholar] [CrossRef]
- Kanazawa, K.; Nakamura, K.; Kobayashi, N. Electroswitching of Emission and Coloration with Quick Response and High Reversibility in an Electrochemical Cell. Chem.–Asian J. 2012, 7, 2551–2554. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.M. Preparation, Characterization, and Electrocatalytic Oxidation Properties of Iron, Cobalt, Nickel, and Indium Hexacyanoferrate. J. Electroanal. Chem. 2002, 521, 29–52. [Google Scholar] [CrossRef]
- Ali, S.; Bansal, V.; Khan, A.; Jain, S.K.; Ansari, M.A. Growth of Zinc Hexacyanoferrate Nanocubes and Their Potential as Heterogeneous Catalyst for Solvent-Free Oxidation of Benzyl Alcohol. J. Mol. Catal. A Chem. 2009, 303, 60–64. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Zhong, Y.; Yang, F.; Pan, J.; Liang, Y. Cobalt Hexacyanoferrate Modified Multi-Walled Carbon Nanotubes/Graphite Composite Electrode as Electrochemical Sensor on Microfluidic Chip. Anal. Chim. Acta 2012, 710, 118–124. [Google Scholar] [CrossRef]
- Chen, S.; Liou, C.; Balamurugan, A.; Thangamuthu, R. Preparation, Characterization, and Electrocatalytic Properties of Mixed—Valent Nickel Hexacyanoferrate/Phosphomolybdate Hybrid Film Electrodes Towards Oxidation. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2009, 21, 919–924. [Google Scholar] [CrossRef]
- Pandey, P.; Pandey, A.; Chauhan, D.S. Nanocomposite of Prussian Blue Based Sensor for L-Cysteine: Synergetic Effect of Nanostructured Gold and Palladium on Electrocatalysis. Electrochim. Acta 2012, 74, 23–31. [Google Scholar] [CrossRef]
- Chen, S.M.; Wang, C.H.; Lin, K.C. Electrocatalytic Oxidation of Guanine and Adenine Based on Iron Hexacyanoferrate Film Modified Electrodes. Int. J. Electrochem. Sci. 2012, 7, 405–425. [Google Scholar] [CrossRef]
- Florescu, M.; Brett, C.M.A. Evaluation of cobalt hexacyanoferrate modified carbon film electrodes for electrochemical glucose biosensors. Rev. Roum. Chim. 2007, 52, 969–974. [Google Scholar]
- Ali, S.R.; Kumar, R.; Kalam, A.; Al-Sehemi, A.G.; Arya, M.C. Effect of Strontium Doping on the Band Gap of CeO2 Nanoparticles Synthesized Using Facile Co-Precipitation. Arab. J. Sci. Eng. 2019, 44, 6295–6302. [Google Scholar] [CrossRef]
- Schmidt, D.; Moskowitz, J.; Hammond, P.T. Electrically Triggered Release of a Small Molecule Drug from a Polyelectrolyte Multilayer Coating. Chem. Mater. 2010, 22, 6416–6425. [Google Scholar] [CrossRef]
- Abe, T.; Taguchi, F.; Tokita, S.; Kaneko, M. Prussian White as a Highly Active Molecular Catalyst for Proton Reduction. J. Mol. Catal. A Chem. 1997, 126, L89–L92. [Google Scholar] [CrossRef]
- Meng, X.; Yang, J.; Zhang, C.; Fu, Y.; Li, K.; Sun, M.; Wang, X.; Dong, C.; Ma, B.; Ding, Y. Light-Driven CO2 Reduction over Prussian Blue Analogues as Heterogeneous Catalysts. ACS Catal. 2022, 12, 89–100. [Google Scholar] [CrossRef]
- Abe, T.; Kawai, N.; Tajiri, A.; Kaneko, M. Electrochemistry of Ruthenium Purple Confined in a Polymer Matrix: Voltammetry, Electrocatalysis for Hydrogen Evolution, and Electron-Transport Characteristics. Bull. Chem. Soc. Jpn. 2003, 76, 645–650. [Google Scholar] [CrossRef]
- Pintado, S.; Goberna-Ferro, S.; Escudero-Ada, E.C. Fast and Persistent Electrocatalytic Water Oxidation by Co–Fe Prussian Blue Coordination Polymers. J. Am. Chem. Soc. 2013, 135, 13270–13273. [Google Scholar] [CrossRef]
- Lundgren, C.A.; Murray, R.W. Observations on the Composition of Prussian Blue Films and Their Electrochemistry. Inorg. Chem. 1988, 27, 933–939. [Google Scholar] [CrossRef]
- Eckermann, A.L.; Barker, K.D.; Hartings, M.R.; Ratner, M.A.; Meade, T.J. Synthesis and Electrochemical Characterization of a Transition-Metal- Modified Ligand—Receptor Pair. J. Am. Chem. Soc. 2005, 127, 11880–11881. [Google Scholar] [CrossRef]
- Shleev, S.; Tkac, J.; Christenson, A.; Ruzgas, T.; Yaropolov, A.I.; Whittaker, J.W.; Gorton, L. Direct Electron Transfer between Copper-Containing Proteins and Electrodes. Biosens. Bioelectron. 2005, 20, 2517–2554. [Google Scholar] [CrossRef]
- Bonifazi, D.; Enger, O.; Diederich, F. Supramolecular Fullerene Chemistry on Surfaces. Chem. Soc. Rev. 2007, 36, 390–414. [Google Scholar] [CrossRef]
- Abad, J.M.; Gass, M.; Bleloch, A.; Schiffrin, D.J. Direct Electron Transfer to a Metalloenzyme Redox Center Coordinated to a Monolayer-Protected Cluster. J. Am. Chem. Soc. 2009, 131, 10229–10236. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, S.; Griva, I.; Trammell, S.A.; Blum, A.S.; Schnur, J.M.; Lebedev, N. Electrochemically Controlled Conductance Switching in a Single Molecule: Quinone-Modified Oligo (Phenylene Vinylene). Acs Nano 2008, 2, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Bertin, P.A.; Georganopoulou, D.; Liang, T.; Eckermann, A.L.; Wunder, M.; Ahrens, M.J.; Blackburn, G.F.; Meade, T.J. Electroactive Self-Assembled Monolayers on Gold via Bipodal Dithiazepane Anchoring Groups. Langmuir 2008, 24, 9096–9101. [Google Scholar] [CrossRef] [PubMed]
- Trammell, S.; Moore, M.; Lowy, D.; Lebedev, N. Surface Reactivity of the Quinone/Hydroquinone Redox Center Tethered to Gold: Comparison of Delocalized and Saturated Bridges. J. Am. Chem. Soc. 2008, 130, 5579–5585. [Google Scholar] [CrossRef]
- Malin, J.M.; Schmidt, C.F.; Toma, H.E. Carbon-13 and Proton Nuclear Magnetic Resonance Spectra of Some Pentacyanoferrate(II) Complexes. Inorg. Chem. 1975, 14, 2924–2928. [Google Scholar] [CrossRef]
- Toma, S.H.; Bonacin, J.A.; Araki, K.; Toma, H.E. Controlled Stabilization and Flocculation of Gold Nanoparticles by Means of 2--Pyrazin--2--ylethanethiol and Pentacyanidoferrate (II) Complexes. Eur. J. Inorg. Chem. 2007, 2007, 3356–3364. [Google Scholar] [CrossRef]
- Eisi Toma, H. Influências Das Interações de Transferência de Elétrons No Comportamento Dos Complexos de Pentaaminrutênio (II) e de Pentacianoferrato (II) Com Ligantes. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 1974. [Google Scholar]
- Andréluiz, A.; Formiga, B.; Vancoillie, S.; Pierloot, K. Electronic Spectra of N-Heterocyclic Pentacyanoferrate(II) Complexes in Different Solvents, Studied by Multiconfigurational Perturbation Theory. Inorg. Chem. 2013, 52, 41. [Google Scholar] [CrossRef]
- Brookins, D.G. Revised Eh-PH Diagrams (25 C, One Bar) for Uranium and Transuranic Elements: Application to Radioactive Waste Studies. MRS Proc. 1988, 125, 161–168. [Google Scholar] [CrossRef]
- Lazar, J.; Schnelting, C.; Slavcheva, E.; Schnakenberg, U. Hampering of the Stability of Gold Electrodes by Ferri-/Ferrocyanide Redox Couple Electrolytes during Electrochemical Impedance Spectroscopy. Anal. Chem. 2016, 88, 33. [Google Scholar] [CrossRef]
- Mayell, J.; Longer, S.H. A Study of Surface Oxides on Platinum Electrodes. J. Electrochem. Soc. 1964, 111, 438. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Klingler, R.J.; Kochi, J.K. Electron-Transfer Kinetics from Cyclic Voltammetry. Quantitative Description of Electrochemical Reversibility. J. Phys. Chem. 1981, 85, 1731–1741. [Google Scholar] [CrossRef]
- Eisner, U.; Gileadi, E. Anodic Oxidation of Hydrazine and Its Derivatives: Part I. The Oxidation of Hydrazine on Gold Electrodes in Acid Solutions. J. Electroanal. Chem. Interfacial Electrochem. 1970, 28, 81–92. [Google Scholar] [CrossRef]
- Plichon, V.; Besbes, S. Mirage Detection of Counter-Ion Flux between Prussian Blue Films and Electrolyte Solutions. J. Electroanal. Chem. Interfacial Electrochem. 1990, 284, 141–153. [Google Scholar] [CrossRef]
- Jayasri, D.; Narayanan, S.S. Amperometric Determination of Hydrazine at Manganese Hexacyanoferrate Modified Graphite–Wax Composite Electrode. J. Hazard. Mater. 2007, 144, 348–354. [Google Scholar] [CrossRef]
- Sensors, K.O. Anodic Oxidation and Amperometric Sensing of Hydrazine at a Glassy Carbon Electrode Modified with Cobalt (II) Phthalocyanine–Cobalt (II) Tetraphenylporphyrin. Sensors 2006, 6, 874–891. [Google Scholar] [CrossRef]
- Koçak, S.; Aslışen, B. Hydrazine Oxidation at Gold Nanoparticles and Poly (Bromocresol Purple) Carbon Nanotube Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2014, 196, 610–618. [Google Scholar] [CrossRef]
- Zheng, J.; Sheng, Q.; Li, L.; Shen, Y. Bismuth Hexacyanoferrate-Modified Carbon Ceramic Electrodes Prepared by Electrochemical Deposition and Its Electrocatalytic Activity towards Oxidation of hydrazine. J. Electroanal. Chem. 2007, 611, 155–161. [Google Scholar] [CrossRef]
Time (s) | Rct (Ω) | Y0 (10−4 mho) | n | W (10−4 mho) | Rs (Ω) |
---|---|---|---|---|---|
0 | 53.3 | 2.38 | 0.953 | 3.96 | 206 |
10 | 83 | 1.58 | 0.47 | 2.42 | 189 |
30 | 82.2 | 1.07 | 0.465 | 2.97 | 183 |
60 | 107 | 1.73 | 0.486 | 2.36 | 213 |
300 | 129 | 9.66 | 0.45 | 3.23 | 144 |
600 | 135 | 8.63 | 0.461 | 3.22 | 161 |
960 | 139 | 0.90 | 0.466 | 3.65 | 146 |
1800 | 171 | 0.55 | 0.577 | 4.36 | 173 |
2700 | 203 | 0.10 | 0.85 | 5.54 | 170 |
3600 | 200 | 0.21 | 0.72 | 7.06 | 155 |
3600 dry | 1830 | 0.19 | 0.653 | 7.33 | 121 |
Bare Pt | Pt@RuFeCN | Pt@RuFePZT | Pt@FeFePZT | |
---|---|---|---|---|
v (mV s−1) | A (cm2) | A (cm2) | A (cm2) | A (cm2) |
10 | 0.034 | 0.069 | 0.049 | 0.046 |
25 | 0.034 | 0.068 | 0.053 | 0.053 |
50 | 0.034 | 0.065 | 0.057 | 0.053 |
100 | 0.033 | 0.062 | 0.058 | 0.052 |
200 | 0.034 | 0.055 | 0.057 | 0.049 |
AVERAGE | 0.034 | 0.064 | 0.065 | 0.051 |
Pt@FeFePZT | Pt@RuFeCN | Pt@RuFePZT | ||
---|---|---|---|---|
Element | Parameter | Values | ||
Rs | R (Ω) | 287 | 96 | 152 |
Rct | R (Ω) | 205 | 642 | 634 |
CPEdl | C (mho) | 1130.0 × 10−4 | 4.15 × 10−4 | 14.7 × 10−4 |
n | 0.74 | 0.35 | 0.73 | |
CPEd | C (mho) | 7.63 × 10−4 | 7.70 × 10−4 | 9.80 × 10−4 |
n | 0.48 | 0.57 | 0.51 |
Pt@RuFeCN | |||||||
v (v s−1) | Cd (F) | Rct (ohm) | vc (v s−1) | k Kochi (cm s−1) | Ψ | k Nicholson (cm s−1) | k Gileadi (cm s−1) |
10 | 7.77 × 10−4 | 643 | 0.063 | 1.21 × 10−3 | 8.70 × 10−1 | 2.66 × 10−3 | 3.84 × 10−3 |
25 | 1.54 × 10−3 | 4.10 × 10−1 | 1.98 × 10−3 | ||||
50 | 2.03 × 10−3 | 3.30 × 10−1 | 2.25 × 10−3 | ||||
100 | 2.62 × 10−3 | 3.10 × 10−1 | 2.99 × 10−3 | ||||
200 | 3.44 × 10−3 | 2.50 × 10−1 | 3.42 × 10−3 | ||||
Pt@RuFePZT | |||||||
v (v s−1) | Cd (F) | Rct (ohm) | vc (v s−1) | k Kochi (cm s−1) | Ψ | k Nicholson (cm s−1) | k Gileadi (cm s−1) |
10 | 9.80 × 10−4 | 634 | 0.07413 | 1.33 × 10−3 | 14.4 × 10−1 | 4.40 × 10−3 | 4.17 × 10−3 |
25 | 1.79 × 10−3 | 7.20 × 10−1 | 3.48 × 10−3 | ||||
50 | 2.29 × 10−3 | 4.70 × 10−1 | 3.21 × 10−3 | ||||
100 | 2.81 × 10−3 | 3.20 × 10−1 | 3.09 × 10−3 | ||||
200 | 3.06 × 10−3 | 2.10 × 10−1 | 2.87 × 10−3 | ||||
Pt@FeFePZT | |||||||
v (v s−1) | Cd (F) | Rct (ohm) | vc (v s−1) | k Kochi (cm s−1) | Ψ | k Nicholson (cm s−1) | k Gileadi (cm s−1) |
10 | 7.63 × 10−4 | 206 | 0.035 | 1.18 × 10−3 | 8.00 × 10−1 | 2.44 × 10−3 | 2.88 × 10−3 |
25 | 1.78 × 10−3 | 6.80 × 10−1 | 3.28 × 10−3 | ||||
50 | 2.24 × 10−3 | 4.99 × 10−1 | 3.41 × 10−3 | ||||
100 | 2.81 × 10−3 | 3.45 × 10−1 | 3.33 × 10−3 | ||||
200 | 3.28 × 10−3 | 2.40 × 10−1 | 3.28 × 10−3 |
Detection Limit (µmol L−1) | Linear Range (µmol L−1) | Ref. | |
---|---|---|---|
Mg hexacyanoferrate | 6.65 | 33.3–8180 | [69] |
Co(II)phthalocyanineCo(II)tetraphenylporphyrin pentamer | 230 | - | [70] |
Au nanoparticles/Poly(bromocresol purple)/CNT/GCE | 0.1 | 0.5–1000 | [71] |
Bi hexacyanoferrate | 3 | 2.5–200 | [72] |
Pt@FeFePZT | 7.38 | 5–64 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledo, K.C.F.; Bonacin, J.A. Unveiling Electrochemical Frontiers: Enhanced Hydrazine Sensing with Na3[Fe(CN)5(PZT)] Modified Electrodes. Inorganics 2025, 13, 85. https://doi.org/10.3390/inorganics13030085
Toledo KCF, Bonacin JA. Unveiling Electrochemical Frontiers: Enhanced Hydrazine Sensing with Na3[Fe(CN)5(PZT)] Modified Electrodes. Inorganics. 2025; 13(3):85. https://doi.org/10.3390/inorganics13030085
Chicago/Turabian StyleToledo, Kalil Cristhian Figueiredo, and Juliano Alves Bonacin. 2025. "Unveiling Electrochemical Frontiers: Enhanced Hydrazine Sensing with Na3[Fe(CN)5(PZT)] Modified Electrodes" Inorganics 13, no. 3: 85. https://doi.org/10.3390/inorganics13030085
APA StyleToledo, K. C. F., & Bonacin, J. A. (2025). Unveiling Electrochemical Frontiers: Enhanced Hydrazine Sensing with Na3[Fe(CN)5(PZT)] Modified Electrodes. Inorganics, 13(3), 85. https://doi.org/10.3390/inorganics13030085