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Abstract: This study presents the synthesis, electrochemical characterization, and sen-
sor application of Na3[Fe(CN)5(PZT)], a novel pentacyanidoferrate-based coordination
compound incorporating 2-pyrazinylethanethiol (PZT) as a ligand. Unlike conventional
Prussian blue analogues, this system exhibits enhanced electrocatalytic properties due to
its unique ligand framework, which contributes to increased charge transfer efficiency
and stability. The complex was synthesized via a controlled ligand substitution reaction,
followed by UV-Vis and IR spectroscopy confirmation of its successful formation. The
electrochemical properties of the Na3[Fe(CN)5(PZT)] complex were investigated using
cyclic voltammetry (CV), differential pulse voltammetry (DPV), square-wave voltammetry
(SWV), and electrochemical impedance spectroscopy (EIS). Notably, the modified electrodes
exhibited improved charge transfer kinetics and catalytic activity, making them promising
candidates for electrochemical sensing applications. The Na3[Fe(CN)5(PZT)]-modified elec-
trode demonstrated outstanding electrocatalytic performance towards hydrazine oxidation,
exhibiting a low detection limit of 7.38 × 10−6 M, a wide linear response range from 5 to
64 µmol L−1, and high sensitivity. The proposed system enables precise quantification
of hydrazine with high selectivity, positioning Na3[Fe(CN)5(PZT)] as an effective electro-
chemical mediator for advanced sensing platforms. These findings provide new insights
into the design of next-generation Prussian blue analogue-based sensors with superior
analytical performance.

Keywords: electrochemical characterization; hydrazine sensing; coordination complexes;
modified electrode materials; Prussian blue analogues

1. Introduction
Hexacyanoferrate (HCF) and several pentacyanideferrates (PCFs) were described in

the literature in the 19th and 20th centuries [1,2]. Typically, PCFs are synthesized from HCF,
nitroprusside, or aminopentacian aldehyde [3,4]. A very striking point in PCF studies is
the charge transfer band in the visible region, which gives these complexes an intense color;
this can be seen in Figure 1.

Another important feature of these cyanide complexes is their ability to form bridging
bonds, resulting in materials with structures like Prussian blue (PB) [5–7]. This unique
material has well-defined electrochemical properties and this type of material can be called
an electroactive coordination polymer (ECP). Prussian blue (Figure 2) is an inorganic
polymer with the characteristics of a metal–organic framework (MOF). It was discovered
accidentally by Diesbach and Dippel in the early 18th century, and is the first inorganic
complex recorded in the literature.
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Figure 1. Aqueous solutions of PCF [Fe(CN)5X]. X from left to right: nitro (NO), cyanide (CN−), aqua 
(H2O), amino (NH3), isonicotinate (C6H4NO2), pyrazine (C4H4N2), and methylpyrazinium (C5H7N2). 

Another important feature of these cyanide complexes is their ability to form bridg-
ing bonds, resulting in materials with structures like Prussian blue (PB) [5–7]. This unique 
material has well-defined electrochemical properties and this type of material can be 
called an electroactive coordination polymer (ECP). Prussian blue (Figure 2) is an inor-
ganic polymer with the characteristics of a metal–organic framework (MOF). It was dis-
covered accidentally by Diesbach and Dippel in the early 18th century, and is the first 
inorganic complex recorded in the literature. 

 

Figure 2. Representation of Prussian blue structure. Adapted from Reference [7]. 

Among the first reports, several researchers evaluated the method of preparation [8], 
the structure [9,10], the oxidation state of the iron atoms, and its applications, and even 
after so many years there are doubts related to its structure. 

Initially, PB was used as pigment [11], but later its high affinity for cations allowed it 
to be used for capturing thallium and cesium [12–15]. Electrochemical properties such as 
electrochromism [16] and the catalytic reduction of hydrogen peroxide [17] and molecular 
oxygen are also reported [18]. At present, the investigations using this compound have 
focused on electrochemical sensors [19], fuel cells, and sodium batteries [20,21], in addi-
tion to reports involving water splitting [22]. 

It is also expected that a change in the characteristics of the formed electroactive co-
ordination polymers will occur when mixing a solution of PCF with a solution containing 
FeIII. The formation of ECP is observed (Figure 3), except in the case of the nitro ligand, 
due to its non-innocent character [23]. When the ligand is of the amino or aqua group, the 
ECP produced is quite similar to the traditional PB [5,10,24]. However, when the ligand is 
an N-heterocyclic, the ligand–metal charge transfer band (LMCT) of the N-heterocyclic 
ligand in the structure is still observed, as is the transition from the cyanide [15,25]. 

Figure 1. Aqueous solutions of PCF [Fe(CN)5X]. X from left to right: nitro (NO), cyanide (CN−),
aqua (H2O), amino (NH3), isonicotinate (C6H4NO2), pyrazine (C4H4N2), and methylpyrazinium
(C5H7N2).
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Figure 2. Representation of Prussian blue structure. Adapted from Reference [7].

Among the first reports, several researchers evaluated the method of preparation [8],
the structure [9,10], the oxidation state of the iron atoms, and its applications, and even
after so many years there are doubts related to its structure.

Initially, PB was used as pigment [11], but later its high affinity for cations allowed it
to be used for capturing thallium and cesium [12–15]. Electrochemical properties such as
electrochromism [16] and the catalytic reduction of hydrogen peroxide [17] and molecular
oxygen are also reported [18]. At present, the investigations using this compound have
focused on electrochemical sensors [19], fuel cells, and sodium batteries [20,21], in addition
to reports involving water splitting [22].

It is also expected that a change in the characteristics of the formed electroactive
coordination polymers will occur when mixing a solution of PCF with a solution containing
FeIII. The formation of ECP is observed (Figure 3), except in the case of the nitro ligand,
due to its non-innocent character [23]. When the ligand is of the amino or aqua group, the
ECP produced is quite similar to the traditional PB [5,10,24]. However, when the ligand
is an N-heterocyclic, the ligand–metal charge transfer band (LMCT) of the N-heterocyclic
ligand in the structure is still observed, as is the transition from the cyanide [15,25].

Another interesting point is the contribution of the ligand in the formation of cavities in
the PB structure [26]. The morphology and crystallinity of the resulting coordination poly-
mers are directly influenced by the ligand associated therewith and can yield mesoporous
materials [25,27,28].

With respect to the use of PCF in the production of electroactive coordination polymers,
a new analysis can be performed in order to produce Prussian blue analogues and new
coordination polymers; this is because the N fragment of the cyanide ligand has the ability
to coordinate with other metal centers. The formation of traditional Prussian blue (PB)
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occurs when the metal involved in bonding is iron, but metals such as ruthenium can also
be used.
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parable to those of metallic oxides, along with an unmatched long-term stability. CoFePB-
modified electrodes maintain a persistent catalytic activity for weeks at neutral pH under 
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aqua (H2O), amino (NH3), isonicotinate (C6H4NO2), pyrazine (C4H4N2), and methylpyrazinium
(C5H7N2

+).

The change in the metal center coordinated by the cyanide bridge has been well
explored, as it also allows structural, spectroscopic, and electrochemical changes [4,29].
ECPs based on Prussian blue analogues are isostructural with respect to the traditional PB
and can be crystalline or non-crystalline, depending on the form of obtention, in addition
to the possibility of obtaining combinations of transition metal ions in multiple states of
oxidation. They are also highly porous, being able to incorporate solvent molecules and
alkali metal ions easily, but one problem with these compounds is that they do not have a
defined stoichiometry.

The catalytic activity of the electroactive coordination polymers in coordination chem-
istry was explored some years ago [30]. The ECPs were used for the preparation of modified
electrodes [31–33], for multiple applications relating to electrochemical sensors [34,35], and
in applications involving electrochromic monitors [36]. In the field of electrocatalysis,
several derivatives have been used for the oxidation or reduction of organic materials [37].
In oxidation catalysis [38], PB-modified electrodes have been developed to detect and
quantify a variety of substrates, such as hydrazine [39], vitamins [40], amino acids [41],
nucleobases [42], glucose [43], and other biologically relevant molecules [44]. It has also
been reported that such derivatives could be used in the administration of drugs, controlled
by electrophoresis [45]. In the field of energy applications, Prussian white was reported to
be an efficient proton reduction catalyst for the evolution of hydrogen, exhibiting higher
activity than noble metals like Pt [46,47]. Ruthenium purple (the common name given to the
ECP obtained by the reaction between the [Ru(CN)6]4− complex and Fe3+ ion) also showed
activity for the hydrogen evolution reaction [48]. Although they are presently intensively
used as oxidation catalysts, the activity of ECPs for the oxygen evolution reaction was not
established until 2013, when the electrocatalytic activity of K2xCo3-x([Fe(CN)6]2 (CoFePB)
was observed [49]. At a neutral pH, this ECP exhibits kinetics comparable to those of
metallic oxides, along with an unmatched long-term stability. CoFePB-modified electrodes
maintain a persistent catalytic activity for weeks at neutral pH under ambient conditions.

ECPs appear to be a viable alternative to metal oxides in promoting the oxidation
of water in artificial photosynthetic devices. They have competitive kinetics and better
stability in neutral and acid media, they are obtained from earth-abundant metals, and they
can be easily processed as powders, thin films, or nanoparticles using classical coordination
chemistry tools. In addition, they are active at a neutral or acid pH without the need
for additional electrolytes, since their stability occurs through the formed cyanide bridge,
without the participation of oxo or hydroxyl groups in their structure.
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Due to these characteristics, the modification of electrodes for electrocatalytic purposes,
such as water oxidation or the electrochemical detection of biomolecules, is extremely
attractive using this type of material. The relevant limitation is the stability of the film
formed on the electrode’s surface after several cycles of film reduction; it has been reported
that the films of AP slowly detach themselves from the electrode surface after several cycles
of film reduction. This systematic effect occurs for all types of electrolytes. The decay of the
current signal is due to the loss of ferric ion from the film [50].

Another limiting factor is the ease with which the film formed can transfer electrons
to the electrode or to the solution. Several papers present studies discussing this factor
mainly in the context of biological processes involving sensors, and artificial and electronic
photosynthesis [51–55]. The focus on electron transfer kinetics has greatly increased in
the field of molecular electronics (rectifiers, junctions, switches, transistors, sensors, etc.),
leading to the portrayal of electrons transported between electrodes through molecular
bridges [56,57].

In view of these characteristics, the compound Na3[Fe(CN)5(PZT)] (PZT = 2-
Pyrazinylethanethiol, Figure 4) can be a very interesting alternative to study, because
the presence of the N-heterocyclic ligand would stabilize the metal center in higher oxi-
dation states, so long as it is possible to modify electrodes mainly with the thiol fragment.
In addition, the formation of Prussian blue analogues can be facilitated by a possible
coordination between the metal ion and the free nitrogen of the pyrazine ligand.
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Figure 4. Structure of the FePZT complex.

This study aims to investigate the synthesis, electrochemical characterization, and
sensor application of the Na3[Fe(CN)5(PZT)] complex, a pentacyanidoferrate-based coordi-
nation compound incorporating 2-pyrazinylethanethiol as a ligand. One key objective is to
explore its electrochemical behavior through cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS), as used to modify glassy carbon and platinum electrodes.
Furthermore, we seek to evaluate the electrocatalytic activity of the modified electrodes in
hydrazine detection, assessing key analytical parameters such as sensitivity, detection limit,
and linear response range. By doing so, this work aims to contribute to the development of
advanced electrochemical sensors and provide new insights into the roles of N-heterocyclic
ligands in coordination polymers, with potential applications in sensing and catalysis.



Inorganics 2025, 13, 85 5 of 21

2. Results and Discussion
2.1. Development of Modified Electrodes with the Complex Na3[Fe(CN)5PZT]

To prove that the precursor complex FePZT has been synthesized, we obtained the
electronic spectrum in the UV-Vis region and the vibrational spectrum for the spectroscopic
characterization. The electrochemical behavior was studied by cyclic voltammetry.

The IR spectrum (Figure S1) of PZT exhibits the characteristic high-energy frequencies
associated with the C–H stretching modes of the –CH2–CH2– group, and a broad band
at 2540 cm–1 related to the S–H stretching vibration. In the FePZT, the FT-IR spectrum
(Figure S1) presents two characteristic bands, at 2050 and 570 cm–1, which are associated
with the vibrational modes of the CN and Fe–CN bonds. The S–H stretching mode can also
be detected in the FTIR spectra, shifting from 2540 to 2470 cm–1 upon the N-coordination
to the pentacyanidoferrate complex.

The 1H NMR spectrum (Figure 5) of the pentacyanidoferrate(II) complex in D2O
exhibits the characteristic downfield shift of the signals of the adjacent aromatic protons
(1 and 3) of the N-heterocycles coordinated to the [Fe(CN)5]3– moiety, changing from
δ = 8.41 to 8.99 ppm for H1 and from δ = 8.41 to 8.89 ppm for the H3 signal, given the free
ligand. Due to the distance involved, the H2 did not have a significant shift in the spectra.
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Figure 5. 1H NMR spectrum of the complex FePZT in D2O.

The observed behavior of the aromatic protons in pentacyanidoferrate(II) N-heterocyclic
complexes involves central contributions from the dπ→pπ back-bonding to the heterocyclic
ligand and the opposing inductive effect, whereas for the α-protons the magnetic anisotropy
due to the electron looping at the CN axis bond is most relevant [58]. Curiously, the thiol
proton signal exhibits a pronounced change in the chemical shift with respect to that of the
free PZT ligand, i.e., from δ = 1.43 to 3.33 ppm in the pentacyanidoferrate(II) complex. This
effect can be ascribed to the magnetic anisotropy of the cyanide ligands, which produces
a deshielding effect on the nuclei located perpendicular to this triple bond. As the thiol
proton lies in a deshielding region, a large downfield shift is observed. Other evidence of the
magnetic anisotropy of the cyanide ligands can be observed in the shape of the thiol proton
peak. In fact, in D2O, the S–H signal of the free PZT ligand appears as a broad coalescent
peak at δ = 1.43 ppm. After coordination to the pentacyanidoferrate(II) complex, this peak
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becomes narrow, at δ = 3.33 ppm, exhibiting a strong spin-decoupling effect, and removing
the triplet feature observed in aprotic solvents.

The absorption spectrum of the FePZT complex in the ultraviolet and visible region
(Figure 6). In pH 7, it is possible to observe a band in the visible region assigned to the
metal–ligand transitions (MLCT) at 457 nm. The ultraviolet transitions observed were
assigned to the π-π* intraligand transitions of the PZT ligand, while the shoulder at 286 nm
was attributed to a metal-to-ligand charge transfer (MLCT) transition involving the metal
center and the cyanide ligands in the structure [59].
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Figure 6. Absorption spectra of the FePZT complex in water in different concentrations, pH = 7.

When the pH is lowered to the value of 1.9 a hypsochromic shift of the MLCT band
is observed due to the protonation of the complex. The hypochromic displacement of the
absorption bands in the UV–Vis region is an indication that the protonation influences the
energy of the orbitals, indicating that the ligand in the coordination sphere, when undergo-
ing protonation, significantly affects the energy of the molecular orbitals, predominantly
those of the metal, and more specifically, the HOMO orbital of the complex (Figure 7) [60].
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In addition to the spectroscopic study, the electrochemical nature of the complex was
also evaluated through the cyclic voltammetry (Figure 8). The electrochemical studies
relating to the complex were carried out in water, and by using potassium chloride (KCl)
as support electrolyte, a glassy carbon electrode as working electrode, a platinum counter
electrode, and the Ag/AgCl as reference electrode. In the voltammogram, it is possible
to observe a quasi-reversible wave attributed to the oxidation process of the Fe(II)/Fe(III)
metal center at 0.45 V vs. Ag/AgCl. Compared to the value of the [Fe(CN)5(NH3)]3−

complex, an increase in the oxidation potential of the metal center (from 0.14 V vs. Ag/AgCl
for the FeNH3 complex to 0.45 V vs. Ag/AgCl for the FePZT complex) [61] is observed due
to the π acceptor nature of the N-heterocyclic ligand, which lowers the electron density in
the center of metal, making the oxidation of the same more difficult.
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Due to the various species that the FePZT complex may present, depending on the
pH of the solution, the pKa values of the complex and their electrochemical behavior were
determined by varying the pH values (Figure S2). It has been noted that the complex has
two pKa values. At first glance, we can assign the first pKa value (3.0) to the protonation of
the pyrazine ligand, but when comparing analogous complexes, such as [Fe(CN)5(py)]4−,
whose ligands have no protonation sites, the formation of a protonated species is still
observed. Toma et al. studied a series of complexes of molecular formula [Fe(CN)5(L)]n−

(L = picoline, pyridine, 4- amide-pyridine, pyrazine, pyridyl-pyrazine, and methyl-
pyrazine), and was able to observe a trend in the pKa values obtained in an acid medium,
one which decreases with the reduction in charge of the transfer charge energy of these
complexes. This fact can be explained by the reduction of the cyanide basicity, which is due
to the electron-withdrawing character of the n-heterocyclic ligand. The second pKa value
obtained in the complex FePZT is attributed to the deprotonation of the thiol group of the
PZT ligand (pKa = 9.75).

A Pourbaix correlation diagram is presented in Figure 9. These diagrams are used in
many fields, such as corrosion science and geochemistry [62]. The pH–potential diagrams
for simple transition metal ions are complex, involving multiple protons and electron
transfer processes. At a pH below 3.0, the complex presents three different redox processes:
the blue line designates the Fe3+/Fe2+ process; the red line, a shoulder at this process; and
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the pink line the reduction of the PZT ligand. The slopes of each oxidative process line
below pH 3 are approximately equal to 59 mV, which is characteristic of a one-electron
one-proton coupled process. Above a pH of 3.0, the deprotonation of the CN ligand trans
of the PZT ligand occurs, and the process is no longer pH dependent (Figure S3).
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Figure 9. This Pourbaix diagram contains the species possibly formed in each region of the FePZT
complex. The symbol * (PZT*) represents a radical species generated through the reduction process.
The charges indicated in the diagram correspond to electron transfer events: a negative sign (−)
denotes the addition of an electron during reduction, while a positive sign (+) represents oxidation
and the loss of an electron. Additionally, the protonation process of the pyrazine ligand is highlighted
by the blue “H” symbol, and the oxidation state of the iron center is indicated in red above its symbol
in the structure.

After studying the spectroscopic and electrochemical properties of the complex, we
started the evaluation of the electrode-modification capacity of this complex. Thus, elec-
trochemical impedance spectroscopy analysis was performed using the [Ru(NH3)6]3+

complex as a probe. The use of this complex instead of the traditional hexacyanoferrate can
be explained as an attempt to avoid interference in the analysis, such as the formation of
Prussian blue on the surface of the electrode, with the reduction of the probe; accordingly,
the electrochemical process on the surface of the electrode can only be attributed to the
transfer of electrons, without any parallel interactions occurring between the probe and the
modified electrode.

The electrode that is most fitting for this evaluation of the modification is the gold
electrode, due to its high affinity with softer ligands like sulfur. The study was based on
the time of formation of the S-Au bond, for which the gold electrode was immersed in a
solution of the Fe-PZT complex at various times (Figure S4).

The data obtained were then adjusted to an electric circuit that would represent
schematically the behavior of the modification. In this way the circuit chosen was the one
proposed by Randles (Figure S5). In this scheme, Rs would be the resistance to electronic
transfer of solvent, Rct the charge transfer resistance between the electrode and the solution,
Cdl the electric double layer capacitance, and the element W would represent an infinite
diffusional process.
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As seen in Table 1, the charge transfer resistance increases as the immersion time is
raised, until it reaches a value that does not suffer as much variation; this shows that the
electrode has reached a saturated state as to the molecules on its surface. The inverse pattern
can be observed when analyzing the CPE value of the material (Y0): the clean electrode
presents a high capacitance value, demonstrating that its surface is more homogeneous in
relation to the accumulation of charges; as the FePZT molecules are bound on its surface,
the gold electrode now has a greater variation in charge, causing the formed electric double
layer to be not uniform.

Table 1. Values obtained from the fitting of the equivalent electrical circuit (EEC) to the experimental
data. The “3600 dry” condition refers to the electrode measured after 3600 s, followed by drying
under vacuum for 12 h before analysis.

Time (s) Rct (Ω) Y0 (10−4 mho) n W (10−4 mho) Rs (Ω)

0 53.3 2.38 0.953 3.96 206
10 83 1.58 0.47 2.42 189
30 82.2 1.07 0.465 2.97 183
60 107 1.73 0.486 2.36 213
300 129 9.66 0.45 3.23 144
600 135 8.63 0.461 3.22 161
960 139 0.90 0.466 3.65 146

1800 171 0.55 0.577 4.36 173
2700 203 0.10 0.85 5.54 170
3600 200 0.21 0.72 7.06 155

3600 dry 1830 0.19 0.653 7.33 121

Another way of evaluating the impedance data is by analyzing the Bode graph, which
can be seen in Figures S6 and S7. With the increased immersion time of the electrode, an
increase in the value of the phase angle can be noted; in addition, it is now possible to
observe a slight increase in the charge transfer resistance of the material. It is possible
to determine that the complete adsorption of the material on the surface of the electrode
happens close to 600 s.

Based on the data, we can assume that the Au-FePZT electrode can be used for the
sensing of molecules, but when analyzing the electrochemical behavior of the electrode
after 12 h in the desiccator, we see that a change occurs in the structure of the material. The
hypothesis that we advance to explain this evidence would be that the FePZT complex
would oxidize the metal surface, thus forming Au3+; this species then coordinates rapidly
to the cyanide nitrogen, thus forming an analogue of Prussian blue containing the gold in
its structure. With the formation of the new film on the surface of the electrode, we observe
the increased values associated with the resistance to charge transfer [63].

So, how to avoid this situation? Our first idea was to replace the gold electrode with a
more stable electrode under these conditions, so the platinum electrode was tested for the
formation of modified electrodes, but now involving the coordination polymers based on
Prussian blue analogues FeFePZT, RuFePZT, and RuFeCN.

2.2. Synthesis, Characterization, and Electrochemical Properties of Ruthenium-Containing
Prussian Blue Analogues Derived from the Na3[Fe(CN)5(PZT)] Complex

The synthesis of the ECPs is direct when the reaction occurs between the hexacyano-
ferrate or pentacyanidoferrate and the metals like Fe3+, Cu2+, and Co3+, basically so that
these compounds react and form ECPs. When the metal ion is exchanged for Ru3+, the
reaction does not occur spontaneously, and more energetic conditions are required. For this
reason, the autoclave system was used to favor the inclusion of this metal in the structure
and facilitate the reaction.
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Due to the charge transfer between the metallic centers, these compounds show intense
colorations and characteristic electronic spectra (Figure 10). The ECP RuFeCN presents
a structural configuration similar to ruthenium purple (Fe4[Ru(CN)6], and therefore the
observed energy for the transition of intervalence for both compounds is located near the
same wavelength (550 nm). When the ECP formation starts from the FePZT complex,
the MLCT transition band, in the area of 400 nm and 500 nm, is observed for both the
ruthenium compound and the iron compound, respectively. In addition to this transition,
the formation of Fe-CN-Fe and Fe-CN-Ru species is confirmed by the bands of 525 nm and
550 nm, respectively.

Inorganics 2025, 13, x FOR PEER REVIEW 10 of 22 
 

 

Based on the data, we can assume that the Au-FePZT electrode can be used for the 
sensing of molecules, but when analyzing the electrochemical behavior of the electrode 
after 12 h in the desiccator, we see that a change occurs in the structure of the material. 
The hypothesis that we advance to explain this evidence would be that the FePZT complex 
would oxidize the metal surface, thus forming Au3+; this species then coordinates rapidly 
to the cyanide nitrogen, thus forming an analogue of Prussian blue containing the gold in 
its structure. With the formation of the new film on the surface of the electrode, we observe 
the increased values associated with the resistance to charge transfer [63]. 

So, how to avoid this situation? Our first idea was to replace the gold electrode with 
a more stable electrode under these conditions, so the platinum electrode was tested for 
the formation of modified electrodes, but now involving the coordination polymers based 
on Prussian blue analogues FeFePZT, RuFePZT, and RuFeCN. 

2.2. Synthesis, Characterization, and Electrochemical Properties of Ruthenium-Containing  
Prussian Blue Analogues Derived from the Na3[Fe(CN)5(PZT)] Complex 

The synthesis of the ECPs is direct when the reaction occurs between the hexacy-
anoferrate or pentacyanidoferrate and the metals like Fe3+, Cu2+, and Co3+, basically so that 
these compounds react and form ECPs. When the metal ion is exchanged for Ru3+, the 
reaction does not occur spontaneously, and more energetic conditions are required. For 
this reason, the autoclave system was used to favor the inclusion of this metal in the struc-
ture and facilitate the reaction. 

Due to the charge transfer between the metallic centers, these compounds show in-
tense colorations and characteristic electronic spectra (Figure 10). The ECP RuFeCN pre-
sents a structural configuration similar to ruthenium purple (Fe4[Ru(CN)6], and therefore 
the observed energy for the transition of intervalence for both compounds is located near 
the same wavelength (550 nm). When the ECP formation starts from the FePZT complex, 
the MLCT transition band, in the area of 400 nm and 500 nm, is observed for both the 
ruthenium compound and the iron compound, respectively. In addition to this transition, 
the formation of Fe-CN-Fe and Fe-CN-Ru species is confirmed by the bands of 525 nm 
and 550 nm, respectively. 

 

Figure 10. Spectra in the ultraviolet region and visible region for ECP FeFePZT, RuFePZT, and Ru-
FeCN in water. 
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The infrared spectra of the synthesized ECPs (Figure S8) showed the characteristic
bands relating to binding of the cyanide ligands and solvation of the water molecules. The
bands assigned to the CN groups are observed in the 1800–2200 cm−1 region. It is possible
to observe that, unlike the FeFePZT compound, ruthenium-containing ECPs had a shoulder
in the 2000 to 1800 cm−1 range, which was attributed to CN stretching close to ruthenium.
In addition to these normal modes of vibration, some bands are observed referring to the
ligand in the range of 1250–1000 cm−1.

The ECPs exhibit structures based on the cubic structure M4[M(CN)6] 3H2O, in which
the octahedral complexes [M(CN)6]4− are linked by octahedrally coordinated M3+ ions;
hence, the X-ray diffraction pattern for this class of compounds is similar, as can be observed
in Figure 11. When the exchange of the CN ligand occurs by the PZT ligand, a change in
the crystallinity of these compounds is observed, making them more amorphous; while
RuFeCN has defined peaks, both FeFePZT and RuFePZT show two wide peaks. However, it
is possible to see a relationship between the RuFeCN peaks and the broad peaks of FeFePZT
and RuFePZT, which means that the structures of both are similar. The difference is that
the amplitudes of the peaks indicate a random atomic distribution, that is, a short-range
atomic distribution (Figure 11)

To improve the adhesion of ECPs on a platinum electrode the film formed was sub-
mitted to the potential of 1.5 V vs. Ag/AgCl. In this potential, the surface of the platinum
electrode is converted to a monolayer of PtO and Pt(OH)2 [64] that can coordinate on the
nitrogen or sulfur of the PZT and CN ligand.
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The formation of ECP was started by the formation of films on the platinum electrodes
(Pt@FeFePZT-modified platinum electrode with ECP FeFePZT; Pt@RuFePZT-modified plat-
inum electrode modified with ECP RuFePZT; and Pt@RuFeCN-modified platinum electrode
with ECP RuFeCN). Due to the amount of film deposited on the electrode, the electro-
chemical study was performed using the square-wave voltammetry technique (Figure 12).
Analyzing the compound with the simplest electrochemical profile (Pt@RuFeCN), we can
observe only a 0.2 V vs. Ag/AgCl process attributed to the Fe2+/Fe3+ oxidation. The
Ru2+/Ru3+ process was not observed in this working range, and the same profile was
observed for the RuFePZT electrode.
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Figure 12. Square-wave voltammetry for the Pt@FeFePZT, Pt@RuFePZT, and Pt@RuFeCN electrodes:
frequency of 25 Hz, with amplitude of 20 mV; counter platinum electrode, and a reference electrode
of Ag/AgCl.
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The Pt@RuFePZT electrode presents the greatest difference in its electrochemical
behavior when compared to the others. We can observe the same wave in the 0.2 V vs.
Ag/AgCl found in the other modified electrodes and attributed to Fe2+/Fe3+ oxidation.
The differential of this electrode can be seen in negative potentials in which the process
is observed at −0.17 V vs. Ag/AgCl. Perhaps during complex formation, due to high
temperatures and high pressure conditions, Run+ ions complex with the other end of the
PZT ligand (Figure 13). This coordination would lead to the formation of FePZT-Run+
fragments. Therefore, the observed wave at −0.17 V vs. Ag/AgCl can be attributed to the
Ru2+/Ru3+ process.
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can be both the solvent (water) and other FePZT complexes.

Considering how the structural differences alter the film formed (mainly with respect
to pore size) the determination of the electroactive area of these electrodes can be of great
help in understanding this fact. In general, the area of the electrodes was determined by
cyclic voltammetry, using an electrochemical probe ([Fe(CN)6]4− [(Fe(CN)6]3− and treating
the data obtained using Equation (1).

A =
ip(

2.69 × 105
)
× n3/2 × D3/2

0 × C∗
0 × ν1/2

(1)

where n is the number of electrons involved in the process, D0 is the diffusion coefficient of
the electrochemical probe, C∗

0 the concentration of the species, and ν is the scanning speed.
The obtained data are shown in Table 2. Compared with the clean platinum electrode, the
electroactive areas of the obtained electrodes are twice as large; this can be explained by
the presence of pores and roughness in the film formed.

Table 2. Calculation of the electrochemically active area of the electrodes under study, where v
determines the scan rate and the obtained area.

Bare Pt Pt@RuFeCN Pt@RuFePZT Pt@FeFePZT

v (mV s−1) A (cm2) A (cm2) A (cm2) A (cm2)

10 0.034 0.069 0.049 0.046
25 0.034 0.068 0.053 0.053
50 0.034 0.065 0.057 0.053
100 0.033 0.062 0.058 0.052
200 0.034 0.055 0.057 0.049

AVERAGE 0.034 0.064 0.065 0.051

Considering that the film formed acts as a second interface between the electrode
and the solution, the electrochemical behavior of the modified electrodes was analyzed by
electrochemical impedance spectroscopy (EIS). EIS measures the impedance and allows the
determination of Z (the system is determined as a function of frequency, so the chemical
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reaction that occurs on the surface of the electrode can be compared with an equivalent
electrochemical circuit and each step can be related to an electrochemical element). The
Randles circuit is one of the simplest models used to analyze the reaction that occurs at the
electrode’s surface.

Figure 14 shows the Nyquist spectra for the electrodes obtained in this work. In this
graph the presence of two distinct regions is clear: the first is in the higher frequencies,
where the electron transfer process can be observed forming a semicircle; and the second
is at low frequencies, where the mass transfer process is what determines the spectrum
profile, generating a line with a slope close to 45◦.
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By adjusting the data obtained experimentally with the equivalent Randles circuit,
we can obtain the values for each element of the circuit (Table 3). It is interesting to note
that the electrodes Pt@RuFeCN and Pt@RuFePZT showed the highest value of charge
transfer resistance, which may be related to the low uniformity of the films formed. It is
also possible to obtain information about the roughness of the film formed by using the
CPE n values, which describe how close this element is to a real capacitor (for n = 1 the
CPE behaves like a real capacitor).

Table 3. Values obtained through adjustments between the experimental data and the Randles
equivalent circuit.

Pt@FeFePZT Pt@RuFeCN Pt@RuFePZT
Element Parameter Values

Rs R (Ω) 287 96 152
Rct R (Ω) 205 642 634

CPEdl
C (mho) 1130.0 × 10−4 4.15 × 10−4 14.7 × 10−4

n 0.74 0.35 0.73

CPEd
C (mho) 7.63 × 10−4 7.70 × 10−4 9.80 × 10−4

n 0.48 0.57 0.51

The evaluation of the heterogeneous electron transfer rate constant (k0) was performed
using three methods. The first two methods, the Nicholson [65] and Kochi [66] methods,
are based on the peak separation generated by the electrode modification involving a
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redox probe, and the third method is Gileadi [67]. The Nicholson method is often used to
determine the standard heterogeneous electron transfer rate constant k0) by relating it to a
dimensionless kinetic parameter Ψ (Equation (2)).

k0 = Ψ[
πD0nFν

RT
]

1/2. (2)

where D0 is the diffusion of the redox probe, n the number of electrons involved, F the
Faraday constant, R the gas constant, T the temperature, and ν the scan rate. The dimen-
sionless parameter can be obtained in the literature; for this, the values of Ψ are tabulated
as a function of the separation of peaks [65].

The second method was described by Kochi and Klinger. This method also depends on
the peak separation (Equation (3)). ∝ is the electron transfer coefficient; this was considered
to be 0.5 for the redox probe [Fe(CN)6]4−/[Fe(CN)6]3−.

k0 = 2.18
[

∝ D0nFν

RT

] 1
2
exp

[
− ∝2 nF∆E

RT

]
(3)

The third method is known as the Gileadi [67] method, and does not require peak
separation to determine the value of k0. This method is based on determining the critical
scan speed at which the electrode reaction changes from reversible to irreversible. Then, by
following Equation (4) one can calculate the value of k0.

logk0 = −0.48 ∝ + 0.52 + log 2.18
[

∝ D0nFVc

2.303RT

] 1
2

(4)

The electron transfer velocity constants are noticeably slower for the modified electrodes
compared to the unmodified electrodes (the value of k0 on the platinum electrode for the
redox probe was 8.4 cm s−1), showing that the transfer of electrons is hampered (Table 4).

Table 4. The k0 values obtained by the methods of Kochi, Nicholson, and Gileadi for the three
modified electrodes.

Pt@RuFeCN

v (v s−1) Cd (F) Rct (ohm) vc (v s−1) k Kochi (cm s−1) Ψ k Nicholson (cm s−1) k Gileadi (cm s−1)

10

7.77 × 10−4 643 0.063

1.21 × 10−3 8.70 × 10−1 2.66 × 10−3

3.84 × 10−3
25 1.54 × 10−3 4.10 × 10−1 1.98 × 10−3

50 2.03 × 10−3 3.30 × 10−1 2.25 × 10−3

100 2.62 × 10−3 3.10 × 10−1 2.99 × 10−3

200 3.44 × 10−3 2.50 × 10−1 3.42 × 10−3

Pt@RuFePZT

v (v s−1) Cd (F) Rct (ohm) vc (v s−1) k Kochi (cm s−1) Ψ k Nicholson (cm s−1) k Gileadi (cm s−1)

10

9.80 × 10−4 634 0.07413

1.33 × 10−3 14.4 × 10−1 4.40 × 10−3

4.17 × 10−3
25 1.79 × 10−3 7.20 × 10−1 3.48 × 10−3

50 2.29 × 10−3 4.70 × 10−1 3.21 × 10−3

100 2.81 × 10−3 3.20 × 10−1 3.09 × 10−3

200 3.06 × 10−3 2.10 × 10−1 2.87 × 10−3

Pt@FeFePZT

v (v s−1) Cd (F) Rct (ohm) vc (v s−1) k Kochi (cm s−1) Ψ k Nicholson (cm s−1) k Gileadi (cm s−1)

10

7.63 × 10−4 206 0.035

1.18 × 10−3 8.00 × 10−1 2.44 × 10−3

2.88 × 10−3
25 1.78 × 10−3 6.80 × 10−1 3.28 × 10−3

50 2.24 × 10−3 4.99 × 10−1 3.41 × 10−3

100 2.81 × 10−3 3.45 × 10−1 3.33 × 10−3

200 3.28 × 10−3 2.40 × 10−1 3.28 × 10−3
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The Pt@FeFePZT electrode presented a good stability in an acidic medium. The low pH
provides protons that can penetrate into the defects of the structures [68]. Thus, decreasing the
charge density around the iron ions increases the oxidation potential of FeNC. Additionally,
the cycling step protects the Fe-NC from the anions, changing the oxidation state of this metal,
and consecutively causing a structural rearrangement in the film formed.

The next step of the characterization studies was focused on the electrocatalytic activity of
the redox mediator toward hydrazine. The oxidation peak currents in various concentrations
of hydrazine for the Pt@FeFePZT were recorded by differential pulse voltammetry (DPV) in
static solutions and chronoamperometry. Figure 15A illustrates the effects of various hydrazine
concentrations on the DPVs at the Pt@FeFePZT. Well-defined voltammograms were obtained.

Inorganics 2025, 13, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 15. (A) Effect of various hydrazine concentrations on the DPVs at the Pt@FeFePZT, showing 
well-defined voltammograms. (B) Chronoamperograms at 0.35 V vs. Ag/AgCl obtained for 
Pt@FeFePZT in water, using potassium chloride (KCl) as support electrolyte, a platinum wire as 
counter electrode, and a reference electrode of Ag/AgCl. In the graphs, the concentration of hydra-
zine was varied from 0 to 64 mmol L−1. 

Table 5. Comparisons of the responses of some hydrazine sensors constructed based on different 
modified electrodes. 

 Detection Limit (µmol L−1) Linear Range (µmol L−1) Ref. 
Mg hexacyanoferrate 6.65 33.3–8180 [69] 

Co(II)phthalocyanineCo(II)tetraphenylporphyrin pentamer 230 - [70] 
Au nanoparticles/Poly(bromocresol purple)/CNT/GCE 0.1 0.5–1000 [71] 

Bi hexacyanoferrate 3 2.5–200 [72] 
Pt@FeFePZT 7.38 5–64 This work 

  

Figure 15. (A) Effect of various hydrazine concentrations on the DPVs at the Pt@FeFePZT, show-
ing well-defined voltammograms. (B) Chronoamperograms at 0.35 V vs. Ag/AgCl obtained for
Pt@FeFePZT in water, using potassium chloride (KCl) as support electrolyte, a platinum wire as
counter electrode, and a reference electrode of Ag/AgCl. In the graphs, the concentration of hydrazine
was varied from 0 to 64 mmol L−1.
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The height of the anodic peak in 0.47 V vs. Ag/AgCl increased with increasing con-
centrations; in contrast, the peak referent to the Fe2+/Fe3+ redox process begins to decrease
due to the reductive property of hydrazine. Figure 15B illustrates the chronoamperometric
response of the Pt@FeFePZT in HCl 0.10 mol L−1 and KCl 0.10 mol L−1 after successive ad-
ditions of hydrazine. As can be seen from Figure 15B (insert), the proposed sensor showed
a linear response, ranging from 5 up to 64 µmol L−1. The detection limit was 7.38 × 10−6 M.
According to these results, the linear response obtained at low concentrations of hydrazine
can be used to develop a hydrazine sensor. The comparisons with previously reported
chemically modified electrodes for the determination of hydrazine is listed in Table 5 As
can be seen, the designed Pt@FeFePZT exhibited a relatively low detection limit.

Table 5. Comparisons of the responses of some hydrazine sensors constructed based on different
modified electrodes.

Detection Limit (µmol L−1) Linear Range (µmol L−1) Ref.

Mg hexacyanoferrate 6.65 33.3–8180 [69]
Co(II)phthalocyanineCo(II)tetraphenylporphyrin

pentamer 230 - [70]

Au nanoparticles/Poly(bromocresol
purple)/CNT/GCE 0.1 0.5–1000 [71]

Bi hexacyanoferrate 3 2.5–200 [72]
Pt@FeFePZT 7.38 5–64 This work

3. Materials and Methods
3.1. Experimental Details

All chemicals were used as received. The electronic spectrum UV–Vis was obtained using
an Agilent 8453 diode array spectrometer by Agilent Technologies, Santa Clara, CA, USA. A
quartz cuvette of 1.0 cm path length at 23 ◦C was used in the experiment. Electrochemical data
were obtained using an Autolab PGSTAT32N potentiostat Metrohm Autolab, Utrecht, The
Netherlands. Electrochemical experiments were performed using a glass cell and conventional
electrodes. The reference electrode was Ag/AgCl KCl in 3 mol L−1 (E◦ = +0.210 vs. SHE). The
working electrode used was Pt and the auxiliary electrode was a Pt wire.

3.2. Synthesis of the Na3[Fe(CN)5(PZT)] Complex

The Na3[Fe(CN)5(PZT)] complex was synthesized following a procedure from the
literature, with modifications. Initially, 0.2 g of aminopentacyanidoferrate was dissolved in
1 mL of deionized water. To this solution, 1 mL of a 2-pyrazinylethanethiol (PZT) ligand
solution, prepared in a fivefold molar excess, was added. The mixture was then cooled in
an ice bath and stirred in the dark for 30 min to ensure complete reaction.

Following the reaction, 1.0 g of sodium iodide (NaI) was added to the solution to
facilitate the precipitation of the complex. Ethanol (30 mL) was then gradually introduced
under continuous stirring, which resulted in the formation of a precipitate. The solid
complex was separated by vacuum filtration, washed with ethanol, and redissolved in
deionized water. The procedure of precipitation with ethanol was repeated to purify the
complex. The purified solid was then dried under vacuum in a desiccator until a constant
weight was achieved, yielding a fine powder of the Na3[Fe(CN)5(PZT)] complex.

3.3. Electrochemical Studies and Electrode Modification

Electrochemical experiments were conducted using a three-electrode system consisting
of a glassy carbon electrode (GCE) or a platinum electrode as the working electrode, a
platinum wire as the counter electrode, and an Ag/AgCl electrode as the reference.
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The working electrode was polished sequentially with alumina suspensions of 1.0, 0.5,
and 0.3 µm to obtain a smooth surface. Following polishing, the electrode was sonicated
in ethanol and deionized water to remove any residual alumina particles and organic
contaminants. Cyclic voltammetry measurements were conducted for the complex in
solution (5 mM in KCl 0.1 M), focusing on the specific potential ranges of each redox
process to better define and highlight their characteristics.

To modify the working electrode, a suspension of the synthesized Na3[Fe(CN)5(PZT)]
complex (1.0 g mL−1) was prepared and 10 µL of this suspension was drop-cast onto the
surface of the cleaned electrode. The modified electrode was then left to dry in a desiccator
under vacuum at room temperature for 12 h, ensuring strong adhesion of the complex to
the electrode surface.

Electrochemical impedance spectroscopy was performed using a conventional three-
electrode system, consisting of a platinum or glassy carbon working electrode, a platinum
wire counter electrode, and an Ag/AgCl reference electrode. The measurements were
carried out in an aqueous solution containing 0.1 M of potassium chloride (KCl) as the
supporting electrolyte. The impedance spectra were recorded over a frequency range of
5000 to 0.05 Hz, with an applied sinusoidal potential perturbation of 10 mV amplitude.

To prevent interference from the formation of Prussian blue on the electrode surface,
[Ru(NH3)6]3+ was used as the redox probe instead of hexacyanoferrate, applying a potential
of 0.25 V vs. Ag/AgCl. The obtained impedance data were fitted using the Randles
equivalent circuit. All measurements were conducted under identical conditions to ensure
consistency and facilitate direct comparison between the different electrode materials.

3.4. Application in Hydrazine Sensing

The modified electrode was evaluated for its electrocatalytic activity towards the
oxidation of hydrazine. The electrochemical response was measured using differential
pulse voltammetry (DPV) in the presence of varying concentrations of hydrazine. The
performance of the sensor was quantified by assessing the detection limit, linear response
range, and sensitivity.

4. Conclusions
In this study, the Na3[Fe(CN)5(PZT)] complex was successfully synthesized and elec-

trochemically characterized, demonstrating its potential as an effective electrocatalyst for
hydrazine oxidation. The modified electrodes exhibited enhanced charge transfer properties
and catalytic activity, as confirmed through cyclic voltammetry, differential pulse voltammetry,
and electrochemical impedance spectroscopy. The electrochemical results revealed a low
detection limit (7.38 × 10−6 M), a wide linear range (5–64 µmol L−1), and high sensitivity,
positioning this system as a promising candidate for hydrazine sensing applications.

Beyond the demonstrated sensing capabilities, this work paves the way for future
advancements in Prussian blue-analogue-based electrochemical systems. One potential
direction is the further optimization of the electrode architecture to enhance long-term
stability and improve selectivity for hydrazine detection in complex matrices. Additionally,
the integration of Na3[Fe(CN)5(PZT)] with nanostructured materials, such as carbon-based
supports or metal nanoparticles, could further enhance electron transfer efficiency and
electrocatalytic performance.

Moreover, given the versatility of Prussian blue analogues, this system could be
explored for broader applications, including energy storage, electrocatalysis in fuel cells,
and water oxidation processes. Future studies could also investigate the tunable electronic
properties of the complex by modifying the ligand environment or incorporating different
metal centers, expanding its utility in molecular electronics and artificial photosynthesis.
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Overall, this research establishes Na3[Fe(CN)5(PZT)] as a promising electroactive
material with applications beyond hydrazine detection, contributing to the ongoing devel-
opment of advanced coordination-based electrochemical platforms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics13030085/s1. Figure S1: Vibrational spectrum of the FePZT
complex obtained in KBr pellet. Figure S2: Titration curve of the FePZT complex. Figure S3: The chemical
equilibria involved in the processes observed during the titration of the FePZT complex primarily
involve protonation-deprotonation. Figure S4: Nyquist plot of impedance spectra of the modified
electrode for different times of immersion in 0.1 mol L−1 PBS ph 7.0 at 298 K using [Ru(NH3)6]Cl3
(5.0 × 10−4 mol L−1) as probe, with applied potential of −0.14 V vs. Ag/AgCl. Figure S5: Modified
Randles equivalent circuit. Figure S6: Bode impedance plot for several immersion times of the gold
electrode in an FePZT solution. Representation of the Bode phase plot in hollow circles, and Bode
impedance graph in full circles. Figure S7: Bode impedance plot of several immersion times for the
gold electrode in an FePZT solution. Representation of the Bode phase plot in hollow circles and Bode
impedance graph in full circles. Figure S8: Vibrational spectra of the ECP obtained in KBr pellets.
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