Designing of High-Performance MnNiS@MXene Hybrid Electrode for Energy Storage and Photoelectrochemical Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations
2.2. Electrochemical Findings
2.3. Supercapattery Characterization
2.4. Photoelectrochemical Activity
3. Experimental Section
3.1. Materials
3.2. Synthesis of MXene
3.3. Synthesis of Manganese Nickel Sulfide/MXene Hybrid
3.4. Fabrication of Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Zhao, Y.; He, C.; Li, K.; Wang, Z.; Liu, J.; Zhang, Q.; Mao, N.; Cao, Y. Metal sulfides encapsulated in doped carbon aerogel towards superior and safe energy storage: Two birds with one stone. Electrochim. Acta 2024, 477, 143819. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, R.; Cai, K.; Wang, T.; Qu, T.; Li, L.; Lang, X. Coordination networks in accordion-like copper based metal–organic frameworks facilitate efficient catalytic strategies in high performance lithium-sulfur batteries. J. Electroanal. Chem. 2024, 967, 118468. [Google Scholar] [CrossRef]
- Anwer, A.H.; Zubair, M.M.; Mashkoor, F.; Benamor, A.; Hasan, I.; Shoeb, M.; Jeong, C. Enhancing the electrochemical performance of hybrid supercapacitors with in-situ grown ultrasound-mediated heterostructure bi-metallic and dual-linker MOF nanoarchitecture by harnessing charge storage mechanisms. J. Alloys Compd. 2024, 970, 172512. [Google Scholar] [CrossRef]
- Gong, Y.; Fu, D.; Fan, M.; Zheng, S.; Xue, Y. Multilayer Core–Sheath Wires with Radially Aligned N-Doped Carbon Nanohole Arrays for Boosting Energy Storage in Zinc-Ion Hybrid Supercapacitors. ACS Appl. Mater. Interfaces 2024, 16, 4793–4802. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.S.; Najam, T.; Hussain, I.; Idrees, M.; Ahmad, A.; Imran, M.; Shah, S.S.A.; Luque, R.; Han, W. Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors. Adv. Energy Mater. 2023, 13, 2202303. [Google Scholar] [CrossRef]
- Liang, C.; Feng, Z.; Chen, M.; Xv, X.; Lu, M.; Wang, W. Nanoflower-like hollow NiMnCo-OH decorated with self-assembled 2D Ti3C2Tx for high-efficiency hybrid supercapacitors. J. Alloys Compd. 2024, 970, 172537. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, L.; Wei, X.; Qiu, B.; Zhang, W.; Qin, Q.; Jia, D.; He, X.; Liu, Z.; Wei, F. The emerging of zinc-ion hybrid supercapacitors: Advances, challenges, and future perspectives. Sustain. Mater. Technol. 2023, 35, e00536. [Google Scholar] [CrossRef]
- Ma, N.; Yang, D.; Riaz, S.; Wang, L.; Wang, K. Aging mechanism and models of supercapacitors: A review. Technologies 2023, 11, 38. [Google Scholar] [CrossRef]
- Ramachandran, T.; Sana, S.S.; Kumar, K.D.; Kumar, Y.A.; Hegazy, H.; Kim, S.C. Asymmetric supercapacitors: Unlocking the energy storage revolution. J. Energy Storage 2023, 73, 109096. [Google Scholar] [CrossRef]
- Wang, W.; Yang, C.; Han, D.; Yu, S.; Qi, W.; Ling, R.; Liu, G. Ni3S2/Ni2O3 heterojunction anchored on N-doped carbon nanosheet aerogels for dual-ion hybrid supercapacitors. J. Colloid Interface Sci. 2024, 654, 709–718. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, T.; Zhao, Z.; Ni, Y. Recent progress in the development of smart supercapacitors. SmartMat 2023, 4, e1158. [Google Scholar] [CrossRef]
- Zheng, R.; Lin, H.; Ding, J.; Zhou, P.; Ying, Y.; Liu, Y. A self-supporting multi-component collaborative structure for enhancing interface electron transfer in hybrid supercapacitor. J. Energy Storage 2024, 75, 109565. [Google Scholar] [CrossRef]
- Bahadur, R.; Singh, G.; Li, Z.; Singh, B.; Srivastava, R.; Sakamoto, Y.; Chang, S.; Murugavel, R.; Vinu, A. Hybrid nanoarchitectonics of ordered mesoporous C60–BCN with high surface area for supercapacitors and lithium-ion batteries. Carbon 2024, 216, 118568. [Google Scholar] [CrossRef]
- Hussain, M.; Alahmari, S.D.; Alharbi, F.; Ejaz, S.R.; Abdullah, M.; Aman, S.; Al-Sehemi, A.G.; Henaish, A.; Sadaf, A.; Farid, H.M.T. Hydrothermal synthesis of the NiS@ g-C3N4 nanohybrid electrode material for supercapacitor applications. J. Energy Storage 2024, 80, 110289. [Google Scholar] [CrossRef]
- Kour, P.; Kour, S.; Sharma, A.; Yadav, K. Electrochemical Advancements in Molybdenum Disulfide via Different Transition Metal (Cr, Mn, Fe, Co) Doping for Hybrid Supercapacitors. J. Alloys Compd. 2024, 981, 173740. [Google Scholar] [CrossRef]
- Li, C.; Jin, R.; Ke, S.; Liu, S.; Li, Q.; Liu, Q.; Zhang, Y. Sulfur vacancies reinforced cobalt molybdenum sulfide nanosheets integrated cathode for high energy density hybrid supercapacitors. Electrochim. Acta 2024, 475, 143594. [Google Scholar] [CrossRef]
- Molaei, M.; Rostami, G.R.; Zardkhoshoui, A.M.; Davarani, S.S.H. In situ tellurization strategy for crafting nickel ditelluride/cobalt ditelluride hierarchical nanostructures: A leap forward in hybrid supercapacitor electrode materials. J. Colloid Interface Sci. 2024, 653, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Shembade, U.V.; Gurav, S.R.; Gaikwad, M.A.; Wategaonkar, S.B.; Ghatage, S.R.; Sonkawade, R.G.; Kim, J.H.; Moholkar, A.V. Hydrothermal synthesis of graphene oxide interspersed in non-uniform tungsten oxide nanorod and its performance towards highly efficient hybrid supercapacitor. Ceram. Int. 2024, 50, 340–350. [Google Scholar] [CrossRef]
- Shembade, U.V.; Wategaonkar, S.B.; Moholkar, A.V. Exploring the synergistic effect of temperature on hydrothermally synthesized tungsten oxide (WO3) nanostructures and its role in asymmetric liquid-state hybrid supercapacitors. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132916. [Google Scholar] [CrossRef]
- Song, Z.; Wang, Z.; Yu, R. Strategies for Advanced Supercapacitors Based on 2D Transition Metal Dichalcogenides: From Material Design to Device Setup. Small Methods 2024, 8, 2300808. [Google Scholar] [CrossRef]
- Yin, S.; Du, Y.; Liang, X.; Xie, Y.; Xie, D.; Mei, Y. Surface coating of biomass-modified black phosphorus enhances flame retardancy of rigid polyurethane foam and its synergistic mechanism. Appl. Surf. Sci. 2023, 637, 157961. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.-S. A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 2016, 6, 1502588. [Google Scholar] [CrossRef]
- Wan, L.; Chen, J.; Zhang, Y.; Du, C.; Xie, M.; Hu, S. High-mass-loading cobalt iron phosphide@ nickel vanadium layered double hydroxide heterogeneous nanosheet arrays for hybrid supercapacitors. J. Colloid Interface Sci. 2024, 654, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Abdurexit, A.; Jamal, R.; Abdiryim, T.; Fan, N.; Liu, Y.; Song, K.; Yang, H. Preparation of PEDOT/Ti3C2Tx/Co3S2 Composite for Quasi−Solid−State Hybrid Supercapacitor with Enhanced Electrochemical Performance. J. Alloys Compd. 2024, 980, 173609. [Google Scholar] [CrossRef]
- Dong, W.; Xie, M.; Zhao, S.; Qin, Q.; Huang, F. Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Mater. Sci. Eng. R Rep. 2023, 152, 100713. [Google Scholar] [CrossRef]
- Fan, X.; Huang, K.; Chen, L.; You, H.; Yao, M.; Jiang, H.; Zhang, L.; Lian, C.; Gao, X.; Li, C. High Power-and Energy-Density Supercapacitors through the Chlorine Respiration Mechanism. Angew. Chem. Int. Ed. 2023, 62, e202215342. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, J.; Peng, F.; Wang, Y.; Hu, S.; Zhang, R.; Liu, Q. A hybrid PEMFC/supercapacitor device with high energy and power densities based on reduced graphene oxide/Nafion/Pt electrode. Int. J. Hydrogen Energy 2023, 48, 16072–16082. [Google Scholar] [CrossRef]
- Liang, C.; Wang, S.; Sha, S.; Lv, S.; Wang, G.; Wang, B.; Li, Q.; Yu, J.; Xu, X.; Zhang, L. Novel semiconductor materials for advanced supercapacitors. J. Mater. Chem. C 2023, 11, 4288–4317. [Google Scholar] [CrossRef]
- Lim, J.M.; Jang, Y.S.; Nguyen, H.V.T.; Kim, J.S.; Yoon, Y.; Park, B.J.; Seo, D.H.; Lee, K.-K.; Han, Z.; Ostrikov, K.K. Advances in high-voltage supercapacitors for energy storage systems: Materials and electrolyte tailoring to implementation. Nanoscale Adv. 2023, 5, 615–626. [Google Scholar] [CrossRef]
- Mondal, S.; Velpula, D.; Sangaranarayanan, M. Electrochemical supercapacitors: An overview on analysis and modeling. In Polymer Electrolyte-Based Electrochemical Devices; Elsevier: Amsterdam, The Netherlands, 2024; pp. 255–282. [Google Scholar]
- Qin, G.; Wu, C.; Song, X.; He, W.; Yang, J.; Yu, X.; Chen, Q. Multifunctional enhanced energy density integrated supercapacitor based on self-healing redox-mediated gel polymer electrolyte. Fuel 2024, 357, 130033. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Huang, Z.; Zhang, H.; Lu, X.; Yan, J.; Cen, K.; Bo, Z. Pore-structure regulation and heteroatom doping of activated carbon for supercapacitors with excellent rate performance and power density. Waste Dispos. Sustain. Energy 2023, 5, 417–426. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, C.; Zhang, S.; Song, X.; Tang, Y.; Cheng, H.-M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 2018, 10, 667–672. [Google Scholar] [CrossRef]
- Guo, X.; Peng, Q.; Shin, K.; Zheng, Y.; Tunmee, S.; Zou, C.; Zhou, X.; Tang, Y. Construction of a Composite Sn-DLC Artificial Protective Layer with Hierarchical Interfacial Coupling Based on Gradient Coating Technology Toward Robust Anodes for Zn Metal Batteries. Adv. Energy Mater. 2024, 2402015. [Google Scholar] [CrossRef]
- Xu, X.; Dong, Y.; Hu, Q.; Si, N.; Zhang, C. Electrochemical hydrogen storage materials: State-of-the-art and future perspectives. Energy Fuels 2024, 38, 7579–7613. [Google Scholar] [CrossRef]
- Liu, P.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Boosting Spatial Charge Storage in Ion-Compatible Pores of Carbon Superstructures for Advanced Zinc-Ion Capacitors. Small 2024, 2400774. [Google Scholar] [CrossRef]
- Mansuer, M.; Miao, L.; Qin, Y.; Song, Z.; Zhu, D.; Duan, H.; Lv, Y.; Li, L.; Liu, M.; Gan, L. Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors. Chin. Chem. Lett. 2023, 34, 107304. [Google Scholar] [CrossRef]
- Imran, M.; Ahmad, M.; Yasmeen, A.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Iqbal, M.Z.; Yusuf, K.; Munnaf, S.A.; Mumtaz, M.A. Synergistic Advancements in Battery-Grade Energy Storage: AgCoS@ MXene@ AC Hybrid Electrode Material as an Enhanced Electrocatalyst for Oxygen Reduction Reaction. ECS J. Solid State Sci. Technol. 2024, 13, 071004. [Google Scholar] [CrossRef]
- Pan, L.; Wang, F.; He, Y.; Sun, X.; Du, G.; Zhou, Q.; Zhang, J.; Zhang, Z.; Li, J. Reassessing self-healing in metallized film capacitors: A focus on safety and damage analysis. In IEEE Transactions on Dielectrics and Electrical Insulation; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Imran, M.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Alqarni, A.S. Superior Electrochemical Performance and Cyclic Stability of WS2@ CoMgS//AC Composite on the Nickel-Foam for Asymmetric Supercapacitor Devices. Energies 2024, 17, 3363. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, G.; Liu, F.; Xiang, T.; Zhou, J.; Li, L. Realizing dendrite-free lithium deposition with three-dimensional soft-rigid nanofiber interlayers. J. Colloid Interface Sci. 2024, 666, 131–140. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Li, X.; Yuan, H. Analytical Model and Safe-Operation-Area Analysis of Bridge-Leg Crosstalk of GaN E-HEMT Considering Correlation Effect of Multi-Parameters. IEEE Trans. Power Electron. 2024, 39, 8146–8161. [Google Scholar] [CrossRef]
- Varghese, S.M.; Mohan, V.V.; Suresh, S.; Gowd, E.B.; Rakhi, R. Synergistically modified Ti3C2Tx MXene conducting polymer nanocomposites as efficient electrode materials for supercapacitors. J. Alloys Compd. 2024, 973, 172923. [Google Scholar] [CrossRef]
- Pathak, M.; Bhatt, D.; Bhatt, R.C.; Bohra, B.S.; Tatrari, G.; Rana, S.; Arya, M.C.; Sahoo, N.G. High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication. Chem. Rec. 2024, 24, e202300236. [Google Scholar] [CrossRef]
- Iro, Z.S.; Subramani, C.; Dash, S. A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Patra, A.; Manasa, G.; Belgami, M.A.; Mun Jeong, S.; Rout, C.S. Borocarbonitride-Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives. Adv. Sci. 2024, 11, 2305325. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Li, X.; Hong, X.; Fan, X.; Savidge, T. Key difference between transition state stabilization and ground state destabilization: Increasing atomic charge densities before or during enzyme–substrate binding. Chem. Sci. 2022, 13, 8193–8202. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, T.; Zhang, C.; Zhang, Y.; Jeong, C.K.; Hwang, G.T.; Chi, Q. Flexible mica films coated by magnetron sputtered insulating layers for high-temperature capacitive energy storage. SusMat 2024, e228. [Google Scholar] [CrossRef]
- Alam, S.; Fiaz, M.I.K.F.; Iqbal, M.Z.; Alam, F.; Ahmad, Z.; Hegazy, H.H. Advancements in asymmetric supercapacitors: Material selection, mechanisms, and breakthroughs with metallic oxides, sulfides, and phosphates. J. Energy Storage 2023, 72, 108208. [Google Scholar] [CrossRef]
- Song, X.; Zhong, R.; Zeng, Y.; Wu, X.; Tan, L. Cobalt nickel sulfide anchored on graphene for high performance all-solid-state asymmetric supercapacitors. Diam. Relat. Mater. 2023, 140, 110447. [Google Scholar] [CrossRef]
- Melkiyur, I.; Rathinam, Y.; Kumar, P.S.; Sankaiya, A.; Pitchaiya, S.; Ganesan, R.; Velauthapillai, D. A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects. Renew. Sustain. Energy Rev. 2023, 173, 113106. [Google Scholar] [CrossRef]
- Ahmad, F.; Khan, M.A.; Waqas, U.; Ramay, S.M.; Atiq, S. Elucidating an efficient super-capacitive response of a Sr2Ni2O5/Rgo composite as an electrode material in supercapacitors. RSC Adv. 2023, 13, 25316–25326. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Aziz, U.; Amjad, N.; Aftab, S.; Wabaidur, S.M. Porous activated carbon and highly redox active transition metal sulfide by employing multi-synthesis approaches for battery-supercapacitor applications. Diam. Relat. Mater. 2023, 136, 110019. [Google Scholar] [CrossRef]
- Singh, P.N.; Mohamed, M.G.; Chaganti, S.V.; Sharma, S.U.; Ejaz, M.; Lee, J.-T.; Kuo, S.-W. Rational design of ultrastable conjugated microporous polymers based on pyrene and perylene units as high-performance organic electrode materials for supercapacitor applications. ACS Appl. Energy Mater. 2023, 6, 8277–8287. [Google Scholar] [CrossRef]
- Ali, Z.; Iqbal, M.Z.; Hegazy, H. Recent advancements in redox-active transition metal sulfides as battery-grade electrode materials for hybrid supercapacitors. J. Energy Storage 2023, 73, 108857. [Google Scholar] [CrossRef]
- Wei, S.; Wan, C.; Wu, Y. Recent advances in wood-based electrode materials for supercapacitors. Green Chem. 2023, 25, 3322–3353. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Z.; Huang, J.; Chen, Z.; Xiang, T.; Feng, Z.; Wang, J.; Wang, S.; Ma, Y.; Yang, H. S/N-co-doped graphite nanosheets exfoliated via three-roll milling for high-performance sodium/potassium ion batteries. J. Mater. Sci. Technol. 2023, 147, 47–55. [Google Scholar] [CrossRef]
- Rajasekaran, S.; KR, S.D.; Reghunath, B.S.; Saravanakumar, B.; William, J.J.; Pinheiro, D. Sm-MOF/rGO/PANI composite as an electrode material for supercapacitor applications. Electrochim. Acta 2023, 467, 143031. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Ullah, A.; Aziz, U.; Asif, M.; Wabaidur, S.M.; Ansari, M.Z. Unveiling the performance of hydrothermally synthesized transition metal sulfide with polyaniline composite for hybrid supercapacitor applications. Curr. Appl. Phys. 2023, 52, 94–100. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Ren, C.-Y.; Liang, Y.; Liang, X.; Lu, N.; Zhang, Y.-C.; Zhao, Y.; Gao, J. Laser-assisted one-step fabrication of interlayer-spacing-regulated three-dimensional MXene-based micro-supercapacitors. Chem. Eng. J. 2024, 483, 149253. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, X.; Liu, C.; Li, Z.; Liu, C.; Shi, X.; Li, Z.; Mei, C.; Li, M.-C. 3D printed MXene-based films and cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible supercapacitors. J. Mater. Chem. A 2024, 12, 3734–3744. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Y.; Wen, Q.; Lin, C.; Gao, H.; Qiu, Z.; Yang, L.; Pan, X. Electrostatic self-assembled nickel cobalt sulfide/Ti3C2 Mxene as a bio-capacitive anode for specific attracting sulfur-cycling bacteria and regulating extracellular electron transfer efficiency. J. Clean. Prod. 2024, 436, 140595. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, X.; Ding, B.; Zou, L.; Wang, P.; Li, C.; Hong, X.; Wang, Z. MXene/PANI composite fiber-based asymmetric supercapacitors for self-powered energy storage system. Mater. Lett. 2024, 355, 135494. [Google Scholar] [CrossRef]
- Shafique, R.; Rani, M.; Batool, K.; Shah, A.A.; Bahajjaj, A.A.A.; Sillanpää, M.; Alsalmah, H.A.; Janjua, N.K.; Arshad, M. Nanoengineering of novel MXene (Ti3C2Tx) based MgCr2O4 nanocomposite with detailed synthesis, morphology and characterization for enhanced energy storage application. Mater. Sci. Eng. B 2024, 299, 117036. [Google Scholar] [CrossRef]
- Padha, B.; Verma, S.; Ahmed, A.; Patole, S.P.; Arya, S. Plastic turned into MXene–based pyro-piezoelectric hybrid nanogenerator-driven self-powered wearable symmetric supercapacitor. Appl. Energy 2024, 356, 122402. [Google Scholar] [CrossRef]
- Mubeen, I.; Shah, S.; Pervaiz, E.; Miran, W. The promising frontier for next-generation energy storage and clean energy production: A review on synthesis and applications of MXenes. Mater. Sci. Energy Technol. 2024, 7, 180–194. [Google Scholar] [CrossRef]
- Khan, M.S.; Imran, M.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Alotaibi, N.H.; Mohammad, S. Fabrication and evaluation of VNbS@ MXene@ AC//NF composite electrodes for advanced energy storage and biomedical applications. Mater. Sci. Eng. B 2024, 308, 117569. [Google Scholar] [CrossRef]
- Hussain, I.; Amara, U.; Bibi, F.; Hanan, A.; Lakhan, M.N.; Soomro, I.A.; Khan, A.; Shaheen, I.; Sajjad, U.; Rani, G.M. Mo-based MXenes: Synthesis, properties, and applications. Adv. Colloid Interface Sci. 2024, 324, 103077. [Google Scholar] [CrossRef]
- Miranda, M.; Sasaki, J.J.A.C.S.A.F. The limit of application of the Scherrer equation. Acta Crystallogr. A Found. Adv. 2018, 74, 54–65. [Google Scholar] [CrossRef]
- Imran, M.; Khan, R.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Iqbal, M.Z.; Zhang, X.; Ali, A.; Albaqami, M.D.; Mohammad, S. Designing high-performance hybrid supercapacitors and electrochemical sensors with carbon nanotube-embedded silver manganese sulfide@AC@NF composites. J. Energy Storage 2024, 96, 112642. [Google Scholar] [CrossRef]
- Khan, R.; Imran, M.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Bahajjaj, A.A.A.; Ahmad, A.u.; Munnaf, S.A.; Choi, E.H.; Subhani, W.S.; et al. Synthesis of binder-free MgSrS/CNT nanocomposite and measure the electrochemical characteristics of asymmetric supercapacitor. J. Mater. Sci. Mater. Electron. 2024, 35, 386. [Google Scholar] [CrossRef]
- Venkateshalu, S.; Cherusseri, J.; Karnan, M.; Kumar, K.S.; Kollu, P.; Sathish, M.; Thomas, J.; Jeong, S.K.; Grace, A.N. New Method for the Synthesis of 2D Vanadium Nitride (MXene) and Its Application as a Supercapacitor Electrode. ACS Omega 2020, 5, 17983–17992. [Google Scholar] [CrossRef]
- Hussain, Z.; Imran, M.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Munnaf, S.A.; Wabaidur, S.M.; Fatima, W.; Safdar, S.; Mumtaz, M.A.; et al. High performance MnNbS@MXene hybrid electrode for battery-supercapacitor hybrid device and biomedical applications. Mater. Sci. Semicond. Process. 2024, 173, 108091. [Google Scholar] [CrossRef]
- Nasrin, K.; Subramani, K.; Karnan, M.; Sathish, M. MnCo2S4–MXene: A novel hybrid electrode material for high performance long-life asymmetric supercapattery. J. Colloid Interface Sci. 2021, 600, 264–277. [Google Scholar] [CrossRef]
- Muzaffar, N.; Anjam, N.; Imran, M.; Afzal, A.M.; Iqbal, M.W.; Alotaibi, N.H.; Mohammad, S.; Mumtaz, S.; Hassan, A.M.; Ahmad, Z.; et al. Designing of VCuS@MXene nanocomposite electrode for energy storage device and electrochemical glucose sensor. J. Mater. Sci. Mater. Electron. 2024, 35, 661. [Google Scholar] [CrossRef]
- Luo, Y.; Tian, Y.; Tang, Y.; Yin, X.; Que, W. 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors. J. Power Sources 2021, 482, 228961. [Google Scholar] [CrossRef]
- Imran, M.; Iqbal, M.W.; Afzal, A.M.; Faisal, M.M.; Alzahrani, H.A. Synergetic electrochemical performance of Nix–Mnx sulfide-based binary electrode material for supercapattery devices. J. Appl. Electrochem. 2023, 53, 1125–1136. [Google Scholar] [CrossRef]
- Khan, R.; Afzal, A.M.; Hussain, Z.; Iqbal, M.W.; Imran, M.; Hamza Waris, M.; Azhar Mumtaz, M.; Usman, M.; Wabaidur, S.M.; Al-Ammar, E.A.; et al. MnNbS/Polyaniline Composite-Based Electrode Material for High-Performance Energy Storage Hybrid Supercapacitor Device. Phys. Status Solidi 2023, 220, 2300200. [Google Scholar] [CrossRef]
- Imran, M.; Afzal, A.M.; Safdar, S.; Muzaffar, N.; Iqbal, M.W.; Naz, A.; Albaqami, M.D.; Mohammad, S.; Mumtaz, S.; Ahmad, Z. Enhancing the electrochemical and photoelectrochemical effects in CNTs@CoMgS@AC nanocomposite based electrode materials for advanced hybrid supercapacitors. Mater. Sci. Eng. B 2024, 300, 117138. [Google Scholar] [CrossRef]
- Hu, P.; Chai, R.; Wang, P.; Yang, J.; Zhou, S. Supercapacitive properties of MnNiSx@Ti3C2Tx MXene positive electrode assisted by functionalized ionic liquid. Chin. J. Chem. Eng. 2023, 61, 102–109. [Google Scholar] [CrossRef]
- Zhu, Y.; Rajouâ, K.; Le Vot, S.; Fontaine, O.; Simon, P.; Favier, F. MnO2-MXene composite as electrode for supercapacitor. J. Electrochem. Soc. 2022, 169, 030524. [Google Scholar] [CrossRef]
- Afzal, A.M.; Iqbal, M.W.; Imran, M.; Umair, H.; Wabaidur, S.M.; Al-Ammar, E.A.; Mumtaz, S.; Choi, E.H. Synthesis of CoNbS, PANI@CoNbS, and PANI@AC Composite and Study of the Impact of PANI on the Electrochemical Characteristics of Energy Storage Device. ECS J. Solid State Sci. Technol. 2023, 12, 051003. [Google Scholar] [CrossRef]
- Imran, M.; Muhammad, Z.; Muzafar, N.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Munnaf, S.A.; Albaqami, M.D.; Ahmad, Z. Enhanced the electrochemical performance of CoMgS nanocomposite electrode with the doping of ZnO for supercapacitor-battery hybrid device and photochemical activity. J. Appl. Electrochem. 2024, 54, 1501–1515. [Google Scholar] [CrossRef]
Materials | Specific Capacity (C/g) | Energy Density (Wh/kg) | Power Density (W/kg) | Ref. |
---|---|---|---|---|
Ni3P2/MXene//AC | 112.80 | 15.66 | 3748.40 | [72] |
MnNbS/MXene//AC | 153.23 | 35.77 | 2800 | [73] |
MCS@MXene | 600 | 25.6 | 6400 | [74] |
VCuS@MXene//AC | 313.2 | 34.99 | 2347 | [75] |
NiCoS@d-T3C2 | - | 22.6 | 400 | [76] |
Ni0.50 Mn0.50 S//AC | 158.60 | 3524 | 3200 | [77] |
MnNbS@PANI | 118.2 | 26.2 | 2072 | [78] |
CNT/CoMgS//AC | 249.8 | 70.0 | 880 | [79] |
MnNiS@Ti3C2Tx | - | 35.11 | 816.34 | [80] |
MXene/MnO2 | - | 20 | 500 | [81] |
Co.Nb.S@PANI | 185.0 | 35.0 | 2400 | [82] |
MnNiS@MXene | 307.18 | 34.79 | 1142.61 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Imran, M.; Afzal, A.M.; Ahsan ul Haq, M.; Alqarni, A.S.; Iqbal, M.W.; Issa, S.A.M.; Zakaly, H.M.H. Designing of High-Performance MnNiS@MXene Hybrid Electrode for Energy Storage and Photoelectrochemical Applications. Inorganics 2024, 12, 205. https://doi.org/10.3390/inorganics12080205
Ahmad M, Imran M, Afzal AM, Ahsan ul Haq M, Alqarni AS, Iqbal MW, Issa SAM, Zakaly HMH. Designing of High-Performance MnNiS@MXene Hybrid Electrode for Energy Storage and Photoelectrochemical Applications. Inorganics. 2024; 12(8):205. https://doi.org/10.3390/inorganics12080205
Chicago/Turabian StyleAhmad, Maqsood, Muhammad Imran, Amir Muhammad Afzal, Muhammad Ahsan ul Haq, Areej S. Alqarni, Muhammad Waqas Iqbal, Shams A. M. Issa, and Hesham M. H. Zakaly. 2024. "Designing of High-Performance MnNiS@MXene Hybrid Electrode for Energy Storage and Photoelectrochemical Applications" Inorganics 12, no. 8: 205. https://doi.org/10.3390/inorganics12080205
APA StyleAhmad, M., Imran, M., Afzal, A. M., Ahsan ul Haq, M., Alqarni, A. S., Iqbal, M. W., Issa, S. A. M., & Zakaly, H. M. H. (2024). Designing of High-Performance MnNiS@MXene Hybrid Electrode for Energy Storage and Photoelectrochemical Applications. Inorganics, 12(8), 205. https://doi.org/10.3390/inorganics12080205