Recent Progress on the Functionalization of Endohedral Metallofullerenes
Abstract
:1. Introduction
2. Functionalization Reactions
2.1. Silylation and Germylation
2.2. Prato Reaction (1,3 Dipolar Cycloaddition)
2.3. Bingel–Hirsch Reaction
2.4. Carbene Addition
2.5. Radical Addition Reaction
2.6. Electrophilic Trifluoromethylation
2.7. Coordination Reaction
2.8. Methoxide Reaction
2.9. Multicomponent Reactions
Reaction | Endohedral Metallofullerene | Reactants | Product | Addition Position | Number of Isomers | Ref. |
---|---|---|---|---|---|---|
Silylation and germylation | Sc3N@Ih-C80 | Disilirane | Sc3N@C80Si2Mes4 | [1,2], [1,4] | 2 | [40,43] |
Silirane | Sc3N@C80Si(Dep)2CH2CHtBp | [5,6]diastereomers,[6,6] | 3 | [43] | ||
Digermirane | Sc3N@C80Ge(Dep)4 | [1,4] | 1 | [43] | ||
Sc3N@D5h-C80 | Disilirane, silirane, digermirane | No product | non-reactive | 0 | [43] | |
Prato reaction (1,3 dipolar cycloaddition) | Y2@C3v(8)-C82 | Diphenylnitrilimine ylide | Y2@C82N2(C6H5)2 | [6,6] | 1 | [48] |
N-benzylazomethine ylide | Y2@C82NCH2(C6H5) | [6,6] | 1 | [48] | ||
Sc3N@D3h-C78 | Trans-phenyl-(3-phenyl-oxiranyl)-methanone | Sc3N@C78(C6H5)CHOCHCO(C6H5) | cis-[6,6] | 2 | [49] | |
Gd3N@Ih-C80 | N-ethylglycine, paraformaldehyde | Gd3N@C80((CH2)2NEt)2 | [6,6] [6,6]-bis adduct | 2 | [54] | |
Gd3N@C80((CH2)2NEt)3 | [6,6] [6,6] [6,6] tris-adduct | 3 | [55] | |||
Gd3N@C80((CH2)2NEt)3 | [6,6] [6,6] [5,6] tris-adduct | 1 | [55] | |||
Gd3N@C80((CH2)2NEt)4 | all [6,6] tera-adduct | 1 | [55] | |||
Bingel–Hirsch reaction | Y@Cs(6)-C82 | Diethyl bromomalonate, DBU | Y@C82CBr(CCOOCH2CH3)2 | [5,6,6]-single bond | 3 | [58] |
Sc3N@Ih(7)-C80 | Diethyl bromomalonate, DBU | Sc3N@C80 CBr(CCOOCH2CH3)2 | [5,6]-open, [6,6]-open | 2 | [62] | |
Lu3N@Ih(7)-C80 | Diethyl bromomalonate, DBU | Lu3N@C80 CBr(CCOOCH2CH3)2 | [6,6]-open | 1 | [62] | |
Carbene addition | Th@C3v(8)-C82 | 2-adamantane-2,30-[3H]-diazirine(AdN2) | Th@C82Ad | [6,6]-open, et al. | 3 | [69] |
U@C2v(9)-C82 | 2-adamantane-2,30-[3H]-diazirine(AdN2) | U@C82Ad | [6,6]-open, et al. | 4 | [69] | |
Dy2TiC@Ih-C80 | 2-adamantane-2,3-[3H]-diazirine (AdN2) | Dy2TiC@C80-Ad | [6,6]-open | 1 | [70] | |
Radical addition reaction | Ln2@C80(Ln2 = Y2, Gd2, Tb2, Dy2, Ho2, Er2, TbY, TbGd) | BrCH2Ph | Ln2@C80(CH2Ph) | [5,6,6] | 1 | [74] |
Dy@C2v(5)-C80 | BrCH2Ph | Dy@C80(CH2Ph) | [5,6,6] | 1 | [75] | |
Er@C72 | 1,2,4-trichlorobenzene | Er@C72(C6H3Cl2) | Unknown | 1 | [76] | |
Er@C76 | Iodobenzene | Er@C76(C6H5) | Unknown | 1 | [76] | |
AgCOOCF3 | Er@C76(CF3)5 | Unknown | 1 | [76] | ||
Er@C82 | AgCOOCF3 | Er@C82(CF3)3 | Unknown | 1 | [76] | |
Er@C82(CF3)5 | Unknown | 3 | [76] | |||
Y@C2v(9)-C82 | N-arylbezamidine | Y@C82NPhCNPh | [5,6] | 1 | [77] | |
Electrophilic trifluoromethylation | Tb2@C80− | Umemoto reagent II | Tb2@C80(CF3) | [5,6,6] | 1 | [78] |
Y2@C80− | Umemoto reagent II | Tb2@C80(CF3) | [5,6,6] | 1 | [78] | |
Coordination reaction | Y@C2v(9)-C82 | Re2(CO)10 | Re(CO)5-η1-Y@C2v(9)-C82 | [5,6,6] | 1 | [80] |
Eu@C2(5)-C82 | W(CO)4(Ph2PC2H4PPh2) | Eu@C82 W(CO)3(Ph2PC2H4PPh2) | η2-[6,6]-bond | 1 | [81] | |
Eu@C2(13)-C84 | W(CO)4(Ph2PC2H4PPh2) | Eu@C84) W(CO)3(Ph2PC2H4PPh2) | η2-[6,6]-bond | 1 | [81] | |
Methoxide reaction | Sc3N@Ih-C80 | TBAOH, CH3OH | Sc3N@C80(OCH3)2 | [1,2], [1,4] | 2 | [82] |
Multicomponent reactions | Sc3N@Ih-C80 | 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazines, water, and oxygen | Sc3N@C80CN=NCO(C5NH4)2 | [5,6]-closed | 1 | [83] |
3,6-bis(6-methylpyridin-2-yl)-1,2,4,5-tetrazine, water, and oxygen | Sc3N@C80CN=NCO(C5NCH3)2 | [5,6]-closed | 1 | [83] | ||
Lu3N@Ih-C80 | tBuNC and EWG-bearing terminalalkynes | Lu3N@C80CCR1CONHtBuCOR2 | [6,6]-open | 1 | [85] | |
tBuNC and dimethyl acetylenedicarboxylate (DMAD) | Lu3N@C80C(COOMe)C(COOMe)CNtBu | [6,6]-open | 1 | [85] | ||
Difluoromethylenation reaction | Sc3N@Ih-C80 | CF2ClCOONa | Sc3N@C80(CF2) | [6,6]-open | 1 | [86] |
Sc3N@C78 | CF2ClCOONa | Sc3N@C78(CF2) | [6,6] | 1 | [87] |
2.10. Difluoromethylenation Reaction
3. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Popov, A.A.; Yang, S.F.; Dunsch, L. Endohedral Fullerenes. Chem. Rev. 2013, 113, 5989–6113. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.F.; Wei, T.; Jin, F. When metal clusters meet carbon cages: Endohedral clusterfullerenes. Chem. Soc. Rev. 2017, 46, 5005–5058. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Feng, L.; Akasaka, T.; Nagase, S. Current status and future developments of endohedral metallofullerenes. Chem. Soc. Rev. 2012, 41, 7723–7760. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.T.; Chen, C.H.; Chen, N.; Echegoyen, L. Fullerenes as nanocontainers that stabilize unique actinide species inside: Structures, formation, and reactivity. Acc. Chem. Res. 2019, 52, 1824–1833. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.Y.; Abella, L.; Yao, Y.R.; Sergentu, D.; Yang, W.; Liu, X.Y.; Zhuang, J.X.; Echegoyen, L.; Autschbach, J.; Chen, N. A charged diatomic triple-bonded U≡N species trapped in C82 fullerene cages. Nat. Commun. 2022, 13, 7192. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.X.; Morales-Martínez, R.; Zhang, J.W.; Wang, Y.F.; Yao, Y.R.; Pei, C.Y.; Rodríguez-Fortea, A.; Wang, S.A.; Echegoyen, L.; Graaf, C.D.; et al. Characterization of a strong covalent Th3+-Th3+ bond inside an Ih(7)-C80 fullerene cage. Nat. Commun. 2021, 12, 2372. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 2000, 63, 843–892. [Google Scholar] [CrossRef]
- Xu, W.; Feng, L.; Calvaresi, M.; Liu, J.; Liu, Y.; Niu, B.; Shi, Z.J.; Lian, Y.F.; Zerbetto, F. An experimentally observed trimetallofullerene Sm3@Ih-C0. J. Am. Chem. Soc. 2013, 135, 4187–4190. [Google Scholar] [CrossRef]
- Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M.R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M.M.; et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 1999, 401, 55–57. [Google Scholar] [CrossRef]
- Wang, C.R.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew. Chem. Int. Ed. 2001, 40, 397–399. [Google Scholar] [CrossRef]
- Svitova, A.L.; Ghiassi, K.B.; Schlesier, C.; Junghans, K.; Zhang, Y.; Olmstead, M.M.; Balch, A.L.; Dunsch, L.; Popov, A.A. Endohedral fullerene with µ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat. Commun. 2014, 5, 3568. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Ziegs, F.; Popov, A.A.; Dunsch, L. Entrapped bonded hydrogen in a fullerene: The five-atom cluster Sc3CH in C80. Chem. Phys. Chem. 2007, 8, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.S.; Feng, L.; Wu, J.Y.; Xu, W.; Xiang, J.F.; Tan, K.; Ma, Y.H.; Zheng, J.P.; Jiang, L.; Lu, X.; et al. Planar quinary cluster inside a fullerene cage: Synthesis and structural characterizations of Sc3NC@C80-Ih. J. Am. Chem. Soc. 2010, 132, 16362–16364. [Google Scholar] [CrossRef]
- Stevenson, S.; Mackey, M.A.; Stuart, M.A.; Phillips, J.P.; Easterling, M.L.; Chancellor, C.J.; Olmstead, M.M.; Balch, A.L. A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(µ3-O)2@Ih-C80. J. Am. Chem. Soc. 2008, 130, 11844–11845. [Google Scholar] [CrossRef] [PubMed]
- Dunsch, L.; Yang, S.F.; Zhang, L.; Svitova, A.; Oswald, S.; Popov, A.A. Metal sulfide in a C82 fullerene cage: A new form of endohedral clusterfullerenes. J. Am. Chem. Soc. 2010, 132, 5413–5421. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.F.; Chen, C.B.; Liu, F.P.; Xie, Y.P.; Li, F.Y.; Jiao, M.Z.; Suzuki, M.; Wei, T.; Wang, S.; Chen, Z.F.; et al. An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@Cs(6)-C82. Sci. Rep. 2013, 3, 1487. [Google Scholar] [CrossRef] [PubMed]
- Chaur, M.N.; Valencia, R.; Rodríguez-Fortea, A.; Poblet, J.M.; Echegoyen, L. Trimetallic nitride endohedral fullerenes: Experimental and theoretical evidence for the M3N6+@C2n6- model. Angew. Chem. Int. Ed. 2009, 48, 1425–1428. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fortea, A.; Balch, A.L.; Poblet, J.M. Endohedral metallofullerenes: A unique host–guest association. Chem. Soc. Rev. 2011, 40, 3551–3563. [Google Scholar] [CrossRef]
- Lu, X.; Bao, L.P.; Akasaka, T.; Nagase, S. Recent progress in the chemistry of endohedral metallofullerenes. Chem. Commun. 2014, 50, 14701–14715. [Google Scholar] [CrossRef]
- Bao, L.P.; Peng, P.; Lu, X. Bonding inside and outside Fullerene Cages. Acc. Chem. Res. 2018, 51, 810–815. [Google Scholar] [CrossRef]
- Yamada, M.; Tanabe, Y.; Dang, J.S.; Sato, S.; Mizorogi, N.; Hachiya, M.; Suzuki, M.; Abe, T.; Kurihara, H.; Maeda, Y.; et al. D2d(23)-C84 versus Sc2C2@D2d(23)-C84: Impact of Endohedral Sc2C2 Doping on Chemical Reactivity in the Photolysis of Diazirine. J. Am. Chem. Soc. 2016, 138, 16523–16532. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, T.; Kato, T.; Kobayashi, K.; Nagase, S.; Yamamoto, K.; Funasaka, H.; Takahashi, T. Exohedral adducts of La@C82. Nature 1995, 374, 600–601. [Google Scholar] [CrossRef]
- Yamada, M.; Nakahodo, T.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Kako, M.; Yoza, K.; Horn, E.; Mizorogi, N.; et al. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J. Am. Chem. Soc. 2005, 127, 14570–14571. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Matsunaga, Y.; Wakahara, T.; Takahashi, S.; Tsuchiya, T.; Ishitsuka, M.O.; Hasegawa, T.; Akasaka, T.; Liu, M.T.H.; Kokura, K.; et al. Isolation and characterization of a carbene derivative of La@C82. J. Am. Chem. Soc. 2004, 126, 6858–6859. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Miyashita, J.; Hasegawa, T.; Wakahara, T.; Tsuchiya, T.; Nakahodo, T.; Akasaka, T.; Mizorogi, N.; Kobayashi, K.; Nagase, S.; et al. Reversible and regioselective reaction of La@C82 with cyclopentadiene. J. Am. Chem. Soc. 2005, 127, 12190–12191. [Google Scholar] [CrossRef] [PubMed]
- Iezzi, E.B.; Duchamp, J.C.; Harich, K.; Glass, T.E.; Lee, H.M.; Olmstead, M.M.; Balch, A.L.; Dorn, H.C. A Symmetric Derivative of the Trimetallic Nitride Endohedral Metallofullerene, Sc3N@C80. J. Am. Chem. Soc. 2002, 124, 524–525. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Mizorogi, N.; Nagase, S. Synthesis and structural characterization of endohedral pyrrolidinodimetallofullerene: La2@C80(CH2)2NTrt. J. Am. Chem. Soc. 2006, 128, 1402–1403. [Google Scholar] [CrossRef] [PubMed]
- Cardona, C.M.; Kitaygorodskiy, A.; Echegoyen, L. Trimetallic nitride endohedral metallofullerenes: Reactivity dictated by the encapsulated metal cluster. J. Am. Chem. Soc. 2005, 127, 10448–10453. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Nakahodo, T.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Kato, T.; Horn, E.; Yoza, K.; Mizorogi, N.; et al. A singly bonded derivative of endohedral metallofullerene: La@C82CBr(COOC2H5)2. J. Am. Chem. Soc. 2005, 127, 17136–17137. [Google Scholar] [CrossRef]
- Lukoyanova, O.; Cardona, C.M.; Rivera, J.; Lugo-Morales, L.Z.; Chancellor, C.J.; Olmstead, M.M.; Rodríguez-Fortea, A.; Poblet, J.M.; Balch, A.L.; Echegoyen, L. “Open Rather than Closed” malonate methano-fullerene derivatives. The formation of methanofulleroid adducts of Y3N@C80. J. Am. Chem. Soc. 2007, 129, 10423–10430. [Google Scholar] [CrossRef]
- Bao, L.P.; Chen, M.Q.; Pan, C.W.; Yamaguchi, T.; Kato, T.; Olmstead, M.M.; Balch, A.L.; Akasaka, T.; Lu, X. Crystallographic Evidence for Direct Metal–Metal Bonding in a Stable Open-Shell La2@Ih-C80 Derivative. Angew. Chem. Int. Ed. 2016, 128, 4314–4318. [Google Scholar] [CrossRef]
- Jin, F.; Tamm, N.B.; Troyanov, S.I.; Yang, S.F. Steering the Geometry of Butterfly-Shaped Dimetal Carbide Cluster within a Carbon Cage via Trifluoromethylation of Y2C2@C82(6). J. Am. Chem. Soc. 2018, 140, 3496–3499. [Google Scholar] [CrossRef] [PubMed]
- Iiduka, Y.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Sakuraba, A.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Kato, T.; et al. Structural determination of metallofullerene Sc3C82 revisited: a surprising finding. J. Am. Chem. Soc. 2005, 127, 12500–12501. [Google Scholar] [CrossRef]
- Kurihara, H.; Lu, X.; Iiduka, Y.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Akasaka, T.; Nagase, S. Sc2C2@C80 Rather than Sc2@C82: Templated Formation of Unexpected C2v(5)-C80 and Temperature-Dependent Dynamic Motion of Internal Sc2C2 Cluster. J. Am. Chem. Soc. 2011, 133, 2382–2385. [Google Scholar]
- Jin, P.; Li, Y.; Magagula, S.; Chen, Z.F. Exohedral functionalization of endohedral metallofullerenes: Interplay between inside and outside. Coordin. Chem. Rev. 2019, 388, 406–439. [Google Scholar] [CrossRef]
- Akasaka, T.; Kato, T.; Nagase, S.; Kobayashi, K.; Yamamoto, K.; Funasaka, H.; Takahashi, T. Chemical derivatization of endohedral metallofullerene La@C82 with digermirane. Tetrahedron 1996, 52, 5015–5020. [Google Scholar] [CrossRef]
- Yamada, M.; Feng, L.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Lian, Y.; Kako, M.; Akasaka, T.; Kato, T.; Kobayashi, K.; et al. Synthesis and characterization of exohedrally silylated M@C82 (M = Y and La). J. Phys. Chem. B 2005, 109, 6049–6051. [Google Scholar]
- Wakahara, T.; Yamada, M.; Takahashi, S.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Kako, M.; Yoza, K.; Horn, E. Two-dimensional hopping motion of encapsulated La atoms in silylated La2@C80. Chem. Commun. 2007, 2680–2682. [Google Scholar] [CrossRef]
- Yamada, M.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Kako, M.; Akasaka, T.; Yoza, K.; Horn, E.; Mizorogi, N.; Nagase, S. Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. Chem. Commun. 2008, 558–560. [Google Scholar] [CrossRef]
- Wakahara, T.; Iiduka, Y.; Ikenaga, O.; Nakahodo, T.; Sakuraba, A.; Tsuchiya, T.; Maeda, Y.; Kako, M.; Akasaka, T.; Yoza, K. Characterization of the bis-silylated endofullerene Sc3N@C80. J. Am. Chem. Soc. 2006, 128, 9919–9925. [Google Scholar] [CrossRef]
- Kako, M.; Miyabe, M.; Sato, K.; Suzuki, M.; Mizorogi, N.; Wang, W.-W.; Yamada, M.; Maeda, Y.; Olmstead, M.M.; Balch, A.L.; et al. Preparation, structural determination, and characterization of electronic properties of bis-silylated and bis-germylated Lu3N@Ih-C80. Chem. Eur. J. 2015, 21, 16411–16420. [Google Scholar] [CrossRef] [PubMed]
- Kako, M.; Nagase, S.; Akasaka, T. Functionalization of endohedral metallofullerenes with reactive silicon and germanium compounds. Molecules 2017, 22, 1179. [Google Scholar] [CrossRef] [PubMed]
- Kako, M.; Miyabe, K.; Fukazawa, S.; Kanzawa, S.; Yasui, M.; Yamada, M.; Maeda, Y.; Slanina, Z.; Uhlík, F.; Adamowicz, L.; et al. Photoreactions of Sc3N@C80 with disilirane, silirane, and digermirane: A photochemical method to separate Ih and D5h Isomers. Photochem 2022, 2, 122–137. [Google Scholar] [CrossRef]
- Cao, B.P.; Wakahara, T.; Maeda, Y.; Han, A.H.; Akasaka, T.; Kato, T.; Kobayashi, K.; Nagase, S. Lanthanum Endohedral Metallofulleropyrrolidines: Synthesis, Isolation, and EPR Characterization. Chem. Eur. J. 2004, 10, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Okamura, M.; Sato, S.; Someya, C.I.; Mizorogi, N.; Tsuchiya, T.; Akasaka, T.; Kato, T.; Nagase, S. Two Regioisomers of Endohedral Pyrrolidinodimetallofullerenes M2@Ih-C80(CH2)2NTrt (M=La, Ce; Trt=trityl): Control of Metal Atom Positions by Addition Positions. Chem.- Eur. J. 2009, 15, 10533–10542. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Ge, Z.X.; Iezzi, E.B.; Glass, T.E.; Harich, K.; Gibson, H.W.; Dorn, H.C. Synthesis and characterization of the first trimetallic nitride templated pyrrolidino endohedral metallofullerenes. Chem. Commun. 2005, 3594–3596. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wu, J.; Xu, W.; Xiang, J.; Lu, X.; Li, B.; Jiang, L.; Shu, C.; Wang, C. Spin Divergence Induced by Exohedral Modification: ESR Study of Sc3C2@C80 Fulleropyrrolidine. Angew. Chem. Int. Ed. 2010, 49, 1830–1833. [Google Scholar] [CrossRef]
- Yu, B.; Shen, W.Q.; Yang, L.; Liu, Y.C.; Pan, C.W.; Cong, H.L.; Jin, P.; Lu, X. Regioselective synthesis, crystallographic characterization, and electrochemical properties of pyrazole- and pyrrole-ring-fused derivatives of Y2@C3v(8)-C82. Chem. Eur. J. 2020, 26, 2464–2469. [Google Scholar] [CrossRef]
- Chen, M.Q.; Guan, R.N.; Li, B.; Yang, L.; Niu, C.; Jin, P.; Wang, G.W.; Yang, S.F. Anomalous cis-conformation regioselectivity of heterocycle-fused Sc3N@D3h-C78 derivatives. Angew. Chem. Int. Ed. 2021, 60, 7880–7886. [Google Scholar] [CrossRef]
- Miao, C.B.; Tian, Z.Y.; Ruan, X.J.; Sun, X.Q.; Yang, H.T. Reaction of [60]fullerene with poxides under photo-irradiation: Synthesis of C60-fused tetrahydrofuran derivatives. Heterocycles 2011, 83, 1615–1620. [Google Scholar] [CrossRef]
- Wang, G.W.; Wu, P.; Yang, H.T.; Miao, C.B.; Xu, Y. Novel cycloaddition reaction of [60] fullerene with carbonyl ylides generated from epoxides. J. Org. Chem. 2006, 71, 4346–4348. [Google Scholar] [CrossRef] [PubMed]
- Aroua, S.; Garcia-Borràs, M.; Bölter, M.F.; Osuna, S.; Yamakoshi, Y. Endohedral metal-induced regioselective formation of bis-Prato adduct of Y3N@Ih-C80 and Gd3N@Ih-C80. J. Am. Chem. Soc. 2015, 137, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Cerón, M.R.; Izquierdo, M.; Garcia-Borràs, M.; Lee, S.S.; Stevenson, S.; Osuna, S.; Echegoyen, L. Bis-1,3-dipolar cycloadditions on endohedral fullerenes M3N@Ih-C80 (M = Sc, Lu): Remarkable endohedral-cluster regiochemical control. J. Am. Chem. Soc. 2015, 137, 11775–11782. [Google Scholar] [CrossRef] [PubMed]
- Semivrazhskaya, O.; Romero-Rivera, A.; Aroua, S.; Troyanov, S.I.; Garcia-Borràs, M.; Stevenson, S.; Osuna, S.; Yamakoshi, Y. Structures of Gd3N@C80 Prato bis-adducts: Crystal structure, thermal isomerization, and computational study. J. Am. Chem. Soc. 2019, 141, 10988–10993. [Google Scholar] [CrossRef] [PubMed]
- Semivrazhskaya, O.; Aroua, S.; Yulikov, M.; Romero-Rivera, A.; Stevenson, S.; Garcia-Borràs, M.; Osuna, S.; Yamakoshi, Y. Regioselective synthesis and characterization of tris- and tetra-Prato adducts of M3N@C80 (M = Y, Gd). J. Am. Chem. Soc. 2020, 142, 12954–12965. [Google Scholar] [CrossRef] [PubMed]
- Bolskar, R.D.; Benedetto, A.F.; Husebo, L.O.; Price, R.E.; Jackson, E.F.; Wallace, S.; Wilson, L.J.; Alford, J.M. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 2003, 125, 5471–5478. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Piao, Q.; Maeda, Y.; Lian, Y.F.; Akasaka, T.; Horn, E.; Yoza, K.; et al. The bingel monoadducts of La@C82: Synthesis, characterization, and electrochemistry. Chem. Eur. J. 2006, 12, 5578–5586. [Google Scholar] [CrossRef]
- Shen, W.Q.; Yang, L.; Li, B.; Jin, P.; Yu, B.; Cong, H.L.; Akasaka, T.; Lu, X. Metal-encapsulation induces a highly regioselective Bingel–Hirsch reaction of the labile Y@Cs(6)-C82. Chem. Commun. 2020, 56, 14357–14360. [Google Scholar] [CrossRef]
- Li, F.F.; Rodriguez-Fortea, A.; Poblet, J.M.; Echegoyen, L. Reactivity of Metallic Nitride Endohedral Metallofullerene Anions: Electrochemical Synthesis of a Lu3N@Ih-C80 Derivative. J. Am. Chem. Soc. 2011, 133, 2760–2765. [Google Scholar] [CrossRef]
- Chaur, M.N.; Melin, F.; Elliott, B.; Athans, A.J.; Walker, K.; Holloway, B.C.; Echegoyen, L. The influence of cage size on the reactivity of trimetallic nitride metallofullerenes: A mono- and bis-methanoadduct of Gd3N@C80 and a monoadduct of Gd3N@C84. Chem. Commun. 2008, 2665–2667. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; Gao, C.L.; Jin, F.; Li, Q.X.; Xie, S.Y.; Yang, S.F. Singly bonded monoadduct rather than methanofullerene: Manipulating the addition pattern of trimetallic nitride clusterfullerene through one endohedral metal atom substitution. Chem. Eur. J. 2016, 22, 8309–8315. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.J.; Solé-Daura, A.; Yao, Y.R.; Liu, X.C.; Liu, S.J.; Yu, A.; Peng, P.; Poblet, J.M.; Rodríguez-Fortea, A.; Echegoyen, L.; et al. Chemical reactions of cationic metallofullerenes: An alternative route for exohedral functionalization. Chem. Eur. J. 2020, 26, 1748–1753. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Someya, C.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Liu, M.T.H.; Mizorogi, N.; et al. Metal Atoms Collinear with the Spiro Carbon of 6,6-Open Adducts, M2@C80(Ad) (M = La and Ce, Ad = Adamantylidene). J. Am. Chem. Soc. 2008, 130, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Iiduka, Y.; Wakahara, T.; Nakajima, K.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Liu, M.T.H.; Mizorogi, N.; et al. Experimental and Theoretical Studies of the Scandium Carbide Endohedral Metallofullerene Sc2C2@C82 and Its Carbene Derivative. Angew. Chem. Int. Ed. 2007, 46, 5562–5564. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Abe, T.; Saito, C.; Yamazaki, T.; Sato, S.; Mizorogi, N.; Slanina, Z.; Uhlík, F.; Suzuki, M.; Maeda, Y.; et al. Adamantylidene Addition to M3N@Ih-C80 (M=Sc, Lu) and Sc3N@D5h-C80: Synthesis and Crystallographic Characterization of the [5,6]-Open and [6,6]-Open Adducts. Chem. Eur. J. 2017, 23, 6552–6561. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Q.; Bao, L.P.; Ai, M.; Shen, W.Q.; Lu, X. Sc3N@Ih-C80 as a novel lewis acid to trap abnormal N-heterocyclic carbene unprecedented formation of a singly bonded [6, 6, 6]-adduct. Chem. Sci. 2016, 7, 2331–2334. [Google Scholar] [CrossRef]
- Chen, M.Q.; Shen, W.Q.; Peng, P.; Bao, L.P.; Zhao, S.S.; Xie, Y.P.; Jin, P.; Fang, H.Y.; Li, F.F.; Lu, X. Evidence of oxygen activation in the reaction between an N-heterocyclic carbene and M3N@Ih(7)-C80: An unexpected method of steric hindrance release. J. Org. Chem. 2017, 82, 3500–3505. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.Q.; Yang, L.; Wu, Y.; Bao, L.P.; Li, Y.; Jin, P.; Fang, H.Y.; Xie, Y.P.; Lu, X. Reactions between N-heterocyclic carbene and lutetium-metallofullerenes: High regioselectivity directed by electronic effect in addition to steric hindrance. J. Org. Chem. 2019, 84, 606–612. [Google Scholar] [CrossRef]
- Liu, X.Y.; Li, B.; Yang, W.; Yao, Y.R.; Yang, L.; Zhuang, J.X.; Li, X.M.; Jin, P.; Chen, N. Synthesis and characterization of carbene derivatives of Th@C3v(8)-C82 and U@C2v(9)-C82: Exceptional chemical properties induced by strong actinide-carbon cage interaction. Chem. Sci. 2021, 12, 2488–2497. [Google Scholar] [CrossRef]
- Chen, M.Q.; Zhao, Y.X.; Jin, F.; Li, M.Y.; Guan, R.N.; Xin, J.P.; Yao, Y.R.; Zhao, X.; Wang, G.W.; Zhang, Q.Y.; et al. Decisive role of non-rare earth metals in high-regioselectivity addition of μ3-carbido clusterfullerene. Inorg. Chem. Front. 2022, 9, 5688–5696. [Google Scholar] [CrossRef]
- Nikawa, H.; Kikuchi, T.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Rahman, G.M.A.; Akasaka, T.; Maeda, Y.; Yoza, K.; Horn, E.; et al. Missing Metallofullerene La@C74. J. Am. Chem. Soc. 2005, 127, 9684–9685. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.Y.; Cai, T.; Xu, L.S.; Zuo, T.M.; Reid, J.; Harich, K.; Dorn, H.C.; Gibson, H.W. Manganese(III)-Catalyzed Free Radical Reactions on Trimetallic Nitride Endohedral Metallofullerenes. J. Am. Chem. Soc. 2007, 129, 15710–15717. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Wang, S.; Tamm, N.B.; Yang, S.F.; Troyanov, S.I. Synthesis, Isolation and Trifluoromethylation of Two Isomers of C84-based Monometallic Cyanide Clusterfullerenes: Interplay between the Endohedral Cluster with the Exohedral Addend. Angew. Chem. Int. Ed. 2017, 56, 11990–11994. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.P.; Velkos, G.; Krylov, D.S.; Spree, L.; Zalibera, M.; Ray, R.; Samoylova1, N.A.; Chen, C.H.; Rosenkranz, M.; Schiemenz1, S.; et al. Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond. Nat. Commun. 2019, 10, 571. [Google Scholar] [CrossRef] [PubMed]
- Han, X.Y.; Xin, J.P.; Yao, Y.R.; Liang, Z.H.; Qiu, Y.F.; Chen, M.Q.; Yang, S.F. Capturing the long-sought Dy@C2v(5)-C80 via benzyl radical stabilization. Nanomaterials 2022, 12, 3291. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Jiang, Y.H.; Wang, Y.Y.; Zhou, T.H.; Shi, Z.J.; Omachi, H.; Shinohara, H.; Sun, B.Y.; Wang, Z.Y. Turning on the near-infrared photoluminescence of erbium metallofullerenes by covalent modification. Inorg. Chem. 2019, 58, 14325–14330. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, P.Y.; Lai, P.; Zou, J.J.; Liu, Z.; Yi, X.G.; Wang, W.; Pan, C.W. Regioselective Radical Reaction of Monometallofullerene Y@C2v(9)-C82 With N-arylbenzamidine Mediated by Silver Carbonate. Front. Chem. 2020, 8, 593602. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Velkos, G.; Israel, N.J.; Rosenkranz, M.; Büchner, B.; Liu, F.P.; Popov, A.A. Electrophilic trifluoromethylation of dimetallofullerene anions en route to air-stable single-molecule magnets with high blocking temperature of magnetization. J. Am. Chem. Soc. 2021, 143, 18139–18149. [Google Scholar] [CrossRef]
- Chen, C.-H.; Yeh, W.Y.; Liu, Y.H.; Lee, G.H. [(µ-H)3Re3(CO)9(η2, η2, η2-Sc2C2@C3v(8)-C82)]: Face-capping cluster complex of an endohedral fullerene. Angew. Chem. Int. Ed. 2012, 51, 3046–13049. [Google Scholar] [CrossRef]
- Xie, Y.P.; Pan, C.W.; Bao, L.P.; Slanina, Z.; Akasaka, T.; Lu, X. Regioselective coordination of Re2(CO)10 to Y@C2v(9)-C82: An unprecedented η1 complex stabilized by intramolecular electron transfer. Organometallics 2019, 38, 2259–2263. [Google Scholar] [CrossRef]
- Bao, L.P.; Yu, P.Y.; Li, Y.; Pan, C.W.; Shen, W.Q.; Jin, P.; Liang, S.Q.; Lu, X. Highly regioselective complexation of tungsten with Eu@C82/Eu@C84: Interplay between endohedral and exohedral metallic units induced by electron transfer. Chem. Sci. 2019, 10, 4945–4950. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.J.; Yao, Y.R.; Liu, X.C.; Yu, A.; Xie, X.M.; Abella, L.; Rodríguez-Fortea, A.; Poblet, J.M.; Akasaka, T.; Peng, P.; et al. Unexpected formation of 1,2- and 1,4-bismethoxyl Sc3N@Ih-C80 derivatives via regioselective anion addition: An unambiguous structural identification and mechanism study. Chem. Sci. 2021, 12, 8123–8130. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Liu, Z.; Chen, M.Q.; Yang, S.F.; Wang, G.W. Unexpected formation of pyrazoline-fused metallofullerenes from the multicomponent cascade reaction of Sc3N@Ih-C80 with tetrazines, water, and oxygen. Org. Lett. 2022, 24, 3493–3498. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, H.; Iiduka, Y.; Rubin, Y.; Waelchli, M.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Unexpected formation of a Sc3C2@C80 bisfulleroid derivative. J. Am. Chem. Soc. 2012, 134, 4092–4095. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.B.; Emge, T.J.; Moreno-Vicente, A.; Kopcha, W.P.; Sun, Y.; Mansoor, I.F.; Lipke, M.C.; Hall, G.S.; Poblet, J.M.; Rodríguez-Fortea, A.; et al. Unexpected formation of metallofulleroids from multicomponent reactions, with crystallographic and computational studies of the cluster motion. Angew. Chem. Int. Ed. 2021, 60, 25269–25273. [Google Scholar] [CrossRef] [PubMed]
- Pykhova, A.D.; Semivrazhskaya, O.O.; Samoylova, N.A.; Rybalchenko, A.V.; Rosenkranz, M.; Ioffe, I.N.; Popov, A.A.; Goryunkov, A.A. Addition of CF2 group to endohedral fullerene Sc3N@Ih-C80. Dalton Trans. 2020, 49, 9137–9147. [Google Scholar] [CrossRef] [PubMed]
- Pykhova, A.D.; Olesya, O. Semivrazhskaya, O.O.; Samoylova, N.A.; Popov, A.A.; Ioffe, I.N.; Goryunkov, A.A. Regioselective CF2 functionalization of Sc3N@D3h(5)-C78. Dalton Trans. 2022, 51, 1182–1190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, X.; Tan, X.; Li, H.; Dai, S.; Yao, B.; Liu, X.; He, Y.; Jin, F. Recent Progress on the Functionalization of Endohedral Metallofullerenes. Inorganics 2023, 11, 346. https://doi.org/10.3390/inorganics11080346
Wang S, Zhang X, Tan X, Li H, Dai S, Yao B, Liu X, He Y, Jin F. Recent Progress on the Functionalization of Endohedral Metallofullerenes. Inorganics. 2023; 11(8):346. https://doi.org/10.3390/inorganics11080346
Chicago/Turabian StyleWang, Song, Xianming Zhang, Xi Tan, Hongzhen Li, Songxin Dai, Bin Yao, Xingyan Liu, Youzhou He, and Fei Jin. 2023. "Recent Progress on the Functionalization of Endohedral Metallofullerenes" Inorganics 11, no. 8: 346. https://doi.org/10.3390/inorganics11080346
APA StyleWang, S., Zhang, X., Tan, X., Li, H., Dai, S., Yao, B., Liu, X., He, Y., & Jin, F. (2023). Recent Progress on the Functionalization of Endohedral Metallofullerenes. Inorganics, 11(8), 346. https://doi.org/10.3390/inorganics11080346