A Series of Lanthanide Complexes with Keggin-Type Monolacunary Phosphotungstate: Synthesis and Structural Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Structural Description
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis
3.3. X-Ray Diffraction on Single Crystals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, M.T. Heteropoly and Isopoly Oxometalates; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Pope, M.T.; Müller, A. Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Yamase, T.; Pope, M.T. Polyoxometalates Chemistry for Nano-Composite Design; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaita-Arino, A.; Coronado, E.; Loss, D. Quantum computing with molecular spin systems. J. Mater. Chem. 2009, 19, 1672–1677. [Google Scholar] [CrossRef]
- Charron, G.; Giusti, A.; Mazerat, S.; Mialane, P.; Gloter, A.; Miserque, F.; Keita, B.; Nadjo, L.; Filoramo, A.; Rivière, E.; et al. Assembly of a magnetic polyoxometalate on SWNTs. Nanoscale 2010, 2, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Newton, G.N.; Yamashita, S.; Hasumi, K.; Matsuno, J.; Yoshida, N.; Nihei, M.; Shiga, T.; Nakano, M.; Nojiri, H.; Wernsdorfer, W.; et al. Redox-Controlled Magnetic {Mn13} Keggin Systems. Angew. Chem. Int. Ed. 2011, 50, 5715–5720. [Google Scholar] [CrossRef]
- AlDamen, M.A.; Cardona-Serra, S.; Clemente-Juan, J.; Coronado, E.; Gaita-Arino, A.; Marti-Gastaldo, C.; Luis, F.; Montero, O. Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13− (LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg. Chem. 2009, 48, 3467–3479. [Google Scholar] [CrossRef]
- Ritchie, C.; Ferguson, A.; Nojiri, H.; Miras, H.N.; Song, Y.-F.; Long, D.-L.; Burkholder, E.; Murrie, M.; Kögerler, P.; Brechin, E.K.; et al. Polyoxometalate-Mediated Self-Assembly of Single-Molecule Magnets: {[XW9O34]2[MnIII4MnII2O4(H2O)4]}12−. Angew. Chem. Int. Ed. 2008, 47, 5609–5612. [Google Scholar] [CrossRef]
- AlDamen, M.A.; Clemente-Juan, J.M.; Coronado, E.; Marti-Gastaldo, C.; Gaita-Ariño, A. Mononuclear Lanthanide Single-Molecule Magnets Based on Polyoxometalates. J. Am. Chem. Soc. 2008, 130, 8874–8875. [Google Scholar] [CrossRef]
- Compain, J.D.; Mialane, P.; Dolbecq, A.; Mbomekallé, I.M.; Marrot, J.; Sécheresse, F.; Rivière, E.; Rogez, G.; Wernsdorfer, W. Iron Polyoxometalate Single-Molecule Magnets. Angew. Chem. Int. Ed. 2009, 48, 3077–3081. [Google Scholar] [CrossRef]
- Weiner, H.; Finke, R.G. An All-Inorganic, Polyoxometalate-Based Catechol Dioxygenase That Exhibits >100 000 Catalytic Turnovers. J. Am. Chem. Soc. 1999, 121, 9831–9842. [Google Scholar] [CrossRef]
- Maksimchuk, N.V.; Timofeeva, M.N.; Melgunov, M.S.; Shmakov, A.N.; Chesalov, Y.A.; Dybtsev, D.N.; Fedin, V.P.; Kholdeeva, O.A. Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J. Catal. 2008, 257, 315–323. [Google Scholar] [CrossRef]
- Kikukawa, Y.; Yamaguchi, K.; Mizuno, N. Zinc(II) Containing γ-Keggin Sandwich-Type Silicotungstate: Synthesis in Organic Media and Oxidation Catalysis. Angew. Chem. Int. Ed. 2010, 49, 6096–6100. [Google Scholar] [CrossRef]
- Okuhara, T.; Mizuno, N.; Misono, M. Catalysis by heteropoly compounds—Recent developments. Appl. Catal. A 2001, 222, 63–77. [Google Scholar] [CrossRef]
- Zhang, T.R.; Liu, S.Q.; Kurth, D.G.; Faul, C.F.J. Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism. Adv. Funct. Mater. 2009, 19, 642–652. [Google Scholar] [CrossRef]
- Cooper, G.J.T.; Cronin, L. Real-Time Direction Control of Self Fabricating Polyoxometalate-Based Microtubes. J. Am. Chem. Soc. 2009, 131, 8368–8369. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, N.; Wang, H.; Nakanishi, R.; Hamanaka, S.; Kitaura, R.; Shinohara, H.; Yokoyama, T.; Yoshikawa, H.; Awaga, K. Nanohybridization of Polyoxometalate Clusters and Single-Wall Carbon Nanotubes: Applications in Molecular Cluster Batteries. Angew. Chem. Int. Ed. 2011, 50, 3471–3474. [Google Scholar] [CrossRef] [PubMed]
- Geisberger, G.; Paulus, S.; Carraro, M.; Bonchio, M.; Patzke, G.R. Synthesis, Characterisation and Cytotoxicity of Polyoxometalate/Carboxymethyl Chitosan Nanocomposites. Chem.–Eur. J. 2011, 17, 4619–4625. [Google Scholar] [CrossRef]
- Wall, M.J.; Wigmore, G.; Lopatar, J.; Frenguelli, B.G.; Dale, N. The novel NTPDase inhibitor sodium polyoxotungstate (POM-1) inhibits ATP breakdown but also blocks central synaptic transmission, an action independent of NTPDase inhibition. Neuropharmacology 2008, 55, 1251–1258. [Google Scholar] [CrossRef]
- Musumeci, C.; Luzio, A.; Pradeep, C.P.; Miras, H.N.; Rosnes, M.H.; Song, Y.F.; Long, D.L.; Cronin, L.; Pignataro, B. Programmable Surface Architectures Derived from Hybrid Polyoxometalate-Based Clusters. J. Phys. Chem. C 2011, 115, 4446–4455. [Google Scholar] [CrossRef]
- Grzhegorzhevskii, K.V.; Shevtsev, N.S.; Abushaeva, A.R.; Chezganov, D.S.; Ostroushko, A.A. Prerequisites and prospects for the development of novel systems based on the Keplerate type polyoxomolybdates for the controlled release of drugs and fluorescent molecules. Russ. Chem. Bull. 2020, 69, 804–814. [Google Scholar] [CrossRef]
- Cavaleiro, A.M.V.; Pedrosa de Jesus, J.D.; Noguera, H.I.S. Metal Clusters in Chemistry; Wiley-VCH: London, UK, 1999. [Google Scholar] [CrossRef]
- Yamase, T. Photo- and Electrochromism of Polyoxometalates and Related Materials. Chem. Rev. 1998, 98, 307–326. [Google Scholar] [CrossRef]
- Sadakane, M.; Dickman, M.H.; Pope, M.T. Controlled Assembly of Polyoxometalate Chains from Lacunary Building Blocks and Lanthanide-Cation Linkers. Angew. Chem. Int. Ed. 2000, 39, 2914–2916. [Google Scholar] [CrossRef]
- Mialane, P.; Lisnard, L.; Mallard, A.; Marrot, J.; Antic-Fidancev, E.; Aschehoug, P.; Vivien, D.; Secheresse, F. Solid-State and Solution Studies of {Lnn(SiW11O39)} Polyoxoanions: An Example of Building Block Condensation Dependent on the Nature of the Rare Earth. Inorg. Chem. 2003, 42, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Peters, F.; Pope, M.T.; Gatteschi, D. Polyoxometalates: Very Large Clusters—Nanoscale Magnets. Chem. Rev. 1998, 98, 239–271. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, K.; Dickman, M.H.; Pope, M.T. Self-Assembly of Supramolecular Polyoxometalates: The Compact, Water-Soluble Heteropolytungstate Anion [AsIII12CeIII16(H2O)36W148O524]76−. Angew. Chem. Int. Ed. Engl. 1997, 36, 1445–1448. [Google Scholar] [CrossRef]
- Belai, N.; Sadakane, M.; Pope, M.T. Formation of Unsymmetrical Polyoxotungstates via Transfer of Polyoxometalate Building Blocks. NMR Evidence Supports the Kinetic Stability of the Pentatungstate Anion, [W5O18]6–, in Aqueous Solution. J. Am. Chem. Soc. 2001, 123, 2087–2088. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhi, M.; Chen, H.; Singh, V.; Ma, P.; Wang, J.; Niu, J. Well-tuned white-light-emitting behaviours in multicenter-Ln polyoxometalate derivatives: A photoluminescence property and energy transfer pathway study. Spectrochim. Acta—A Mol. Biomol. Spectrosc. 2019, 223, 117294. [Google Scholar] [CrossRef]
- Wang, K.; Feng, S.; Ma, P. Synthesis, characterization and photoluminescence properties of a benzoic modified lanthanide-containing polyoxometalate. Inorg. Chem. Commun. 2019, 108, 107511. [Google Scholar] [CrossRef]
- Wu, H.; Yan, B.; Liang, R.; Singh, V.; Ma, P.; Wang, J.; Niu, J. An organic chromophore—Modified samarium-containing polyoxometalate: Excitation-dependent color tunable behavior from the organic chromophores to the lanthanide ion. Dalton Trans. 2020, 49, 388–394. [Google Scholar] [CrossRef]
- Wang, K.; Feng, S.; Ma, P. Synthesis, characterization and photoluminescence properties of an organic–inorganic hybrid monolacunary Keggin-type polyoxotungstate. Inorg. Chem. Commun. 2021, 129, 108621. [Google Scholar] [CrossRef]
- Sarwar, S.; Sanz, S.; van Leusen, J.; Nichol, G.S.; Brechin, E.K.; Kögerler, P. Phthalocyanine-polyoxotungstate lanthanide double deckers. Dalton Trans. 2020, 49, 16638–16642. [Google Scholar] [CrossRef]
- Niu, J.; Wang, K.; Chen, H.; Zhao, J.; Ma, P.; Wang, J.; Li, M.; Bai, Y.; Dang, D. Assembly Chemistry between Lanthanide Cations and Monovacant Keggin Polyoxotungstates: Two Types of Lanthanide Substituted Phosphotungstates [{(α-PW11O39H)Ln(H2O)3}2]6− and [{(α-PW11O39)Ln(H2O)(η2,μ-1,1)-CH3COO}2]10−. Cryst. Growth Des. 2009, 9, 4362–4372. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, C.; Chen, H.; Ma, P.; Wang, J.; Niu, J. Syntheses, structures and properties of dimeric rare earth derivatives based on monovacant Keggin-type polyoxotungstates. Inorg. Chim. Acta 2012, 391, 218–223. [Google Scholar] [CrossRef]
- Zhao, H.-Y.; Zhao, J.-W.; Yang, B.-F.; He, H.; Yang, G.-Y. Organic–inorganic hybrids based on monovacant Keggin-type polyoxotungstates and 3d–4f heterometals. CrystEngComm 2013, 15, 8186–8194. [Google Scholar] [CrossRef]
- Zhao, H.-Y.; Zhao, J.-W.; Yang, B.-F.; Wei, Q.; Yang, G.-Y. Two Organic–Inorganic Hybrids Assembled by Carboxylate-Bridging Lanthanide-Substituted Polyoxometalate Dimers with Copper–ethylendiamine Cations. J. Clust. Sci. 2014, 25, 667–680. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Zhao, J.; Ma, P.; Wang, J.; Niu, J. Two types of oxalate-bridging rare-earth-substituted Keggin-type phosphotungstates {[(α-PW11O39)RE(H2O)]2(C2O4)}10− and {(α-x-PW10O38)RE2(C2O4)(H2O)2}3−. Dalton Trans. 2012, 41, 3764–3772. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Hu, F.; Wan, R.; Huo, Y.; Zhang, D.; Niu, J.; Wang, J. Magnetic double-tartaric bridging mono-lanthanide substituted phosphotungstates with photochromic and switchable luminescence properties. J. Mater. Chem. C 2016, 4, 5424–5433. [Google Scholar] [CrossRef]
- Wu, H.; Zhi, M.; Singh, V.; Li, H.; Ma, P.; Niu, J.; Wang, J. Elucidating white light emissions in Tm3+/Dy3+ codoped polyoxometalates: A color tuning and energy transfer mechanism study. Dalton Trans. 2018, 47, 13949–13956. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, D.; Ma, J.; Ma, P.; Niu, J.; Wang, J. Three-dimensional lanthanide polyoxometalate organic complexes: Correlation of structure with properties. CrystEngComm 2012, 14, 3205–3212. [Google Scholar] [CrossRef]
- Peacock, R.D.; Weakley, T.J.R. Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. J. Chem. Soc. A 1971, 1836–1839. [Google Scholar] [CrossRef]
- Zhang, C.; Howell, R.C.; Scotland, K.B.; Perez, F.G.; Todaro, L.; Francesconi, L.C. Aqueous Speciation Studies of Europium(III) Phosphotungstate. Inorg. Chem. 2004, 43, 7691–7701. [Google Scholar] [CrossRef]
- Fan, L.; Xu, L.; Gao, G.; Li, F.; Li, Z.; Qiu, Y. A novel polyoxometalate chain constructed from sandwich lanthanide-containing polyanion [Ce(PW11O39)2]10− and sodium ion linker. Inorg. Chem. Commun. 2006, 9, 1308–1311. [Google Scholar] [CrossRef]
- Fan, L.-H.; Xu, L.; Zhang, C.-H.; Li, F.-Y.; Li, Z.-K.; Liu, X.-Z. A novel polyoxometalate chain constructed from sandwich lanthanide-containing polyanions [Pr(PW11O39)2]11− and sodium cation linkers. Struct. Chem. 2007, 18, 917–921. [Google Scholar] [CrossRef]
- Iijima, J.; Ishikawa, E.; Nakamura, Y.; Naruke, H. Synthesis and structural investigation of sandwich polyoxotungstates containing cerium (III/IV) and mono-lacunary Keggin tungstophosphate units. Inorg. Chim. Acta 2010, 363, 1500–1506. [Google Scholar] [CrossRef]
- Iijima, J.; Naruke, H. Structural characterization of Keggin sandwich-type [LnIII(α-PW11O39)2]11− (Ln = La and Ce) anion containing a pseudo-cubic LnIIIO8 center. Inorg. Chim. Acta 2011, 379, 95–99. [Google Scholar] [CrossRef]
- Gupta, R.; Saini, M.K.; Doungmene, F.; de Oliveira, P.; Hussain, F. Lanthanoid containing phosphotungstates: The syntheses, crystal structure, electrochemistry, photoluminescence and magnetic properties. Dalton Trans. 2014, 43, 8290–8299. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.-R.; Lu, X.-N.; Liao, J.-S.; Zhang, C.-W.; You, H.-Y.; Liu, C.-M. Preparation and luminescence properties of phosphors of rare earth complexes based on polyoxotungstates. Mater. Res. Bull. 2015, 68, 16–21. [Google Scholar] [CrossRef]
- Ma, P.; Hu, F.; Huo, Y.; Zhang, D.; Zhang, C.; Niu, J.; Wang, J. Magnetoluminescent Bifunctional Dysprosium-Based Phosphotungstates with Synthesis and Correlations between Structures and Properties. Cryst. Growth Des. 2017, 17, 1947–1956. [Google Scholar] [CrossRef]
- Li, Z.; Lin, L.-D.; Zhao, D.; Sun, Y.-Q.; Zheng, S.-T. A Series of Unprecedented Linear Mixed-Metal-Substituted Polyoxometalate Trimers: Syntheses, Structures, Luminescence, and Proton Conductivity Properties. Eur. J. Inorg. Chem. 2019, 3–4, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Naruke, H.; Iijima, J.; Sanji, T. Enantioselective Resolutions and Circular Dichroism Studies of Lanthanide-Containing Keggin-Type [Ln(PW11O39)2]11– Polyoxometalates. Inorg. Chem. 2011, 50, 7535–7539. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Zhang, J.; Zhao, J.; Chen, L. Synthesis, structure, spectroscopic and ferroelectric properties of an acentric polyoxotungstate containing 1:2-type [Sm(α-PW11O39)2]11− fragment and d-proline components. Spectrochim. Acta—A Mol. Biomol. Spectrosc. 2015, 134, 101–108. [Google Scholar] [CrossRef]
- Iijima, J.; Naruke, H.; Sanji, T. On chirality induction in the crystalline solid-containing sandwich-type [Ln(α-PW11O39)2]11− polyoxotungstate and proline. RSC Adv. 2016, 6, 91494–91507. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Guo, G.-L.; Wang, J.-P. Hydrothermal synthesis and crystal structure of a heteropolyoxotungstate formed by sandwich-type heteropolyanion [Gd(PW11O39)2]11− and reduced [Cu(en)2]+ cations. J. Coord. Chem. 2008, 61, 2428–2436. [Google Scholar] [CrossRef]
- Du, D.-Y.; Qin, J.-S.; Li, S.-L.; Wang, X.-L.; Yang, G.-S.; Li, Y.-G.; Shao, K.-Z.; Su, Z.-M. A series of inorganic–organic hybrid compounds constructed from bis(undecatungstophosphate) lanthanates and copper-organic units. Inorg. Chim. Acta 2010, 363, 3823–3831. [Google Scholar] [CrossRef]
- Du, D.-Y.; Qin, J.-S.; Yuan, G.; Lan, Y.-Q.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M. Building block approach to a series of substituted Keggin-type inorganic–organic hybrids. Solid State Sci. 2011, 13, 1115–1121. [Google Scholar] [CrossRef]
- Chen, L.; Shi, D.; Wang, Y.; Cheng, H.; Geng, Z.; Zhao, J.; Ma, P.; Niu, J. Two 3d–4f heterometallic monovacant Keggin phosphotungstate derivatives. J. Coord. Chem. 2011, 64, 400–412. [Google Scholar] [CrossRef]
- Shi, D.; Chen, L.; Zhao, J.; Wang, Y.; Ma, P.; Niu, J. Two novel 2D organic–inorganic hybrid lacunary Keggin phosphotungstate 3d–4f heterometallic derivatives: [Cu(en)2]2H6[Ce(α-PW11O39)2]·8H2O and [Cu(dap)2(H2O)][Cu(dap)2]4.5[Dy(α-PW11O39)2]·4H2O. Inorg. Chem. Commun. 2011, 14, 324–329. [Google Scholar] [CrossRef]
- Shi, D.; Wang, Z.; Xing, J.; Li, Y.; Luo, J.; Chen, L.; Zhao, J. A 2-D Organic–Inorganic Hybrid Copper-Yttrium Heterometallic Monovacant Keggin Phosphotungstate Derivative: [Cu(dap)2]5.5[Y(α-PW11O39)2]·4H2O. Synth. React. Inorg. Metalorg. Nanometal. Chem. 2012, 42, 30–36. [Google Scholar] [CrossRef]
- Li, Y.; Tian, S.; Li, Y.-Z.; Zhao, J.; Ma, P.; Chen, L. Two 2D Cu–Ln heterometallic polyoxometalate aggregates constructed from bis(undecatungstophosphate)lanthanate units and copper-complex bridges. Inorg. Chim. Acta 2013, 405, 105–110. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, X.; Shi, D.; Zhao, J.; Chen, L. Synthesis, Structure, and Properties of a 2-D Organic–Inorganic Hybrid Phosphotungstate-Based CuII–LaIII Heterometallic Derivative. Synth. React. Inorg. Metalorg. Nanometal. Chem. 2014, 44, 171–176. [Google Scholar] [CrossRef]
- Zhao, H.-Y.; Yang, B.-F.; Yang, G.-Y. Two new 2D organic–inorganic hybrids assembled by lanthanide-substituted polyoxotungstate dimers and copper–complex linkers. Inorg. Chem. Commun. 2017, 84, 212–216. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, P.; Chen, H.; Wang, J.; Niu, J. Synthesis, structure, and properties of a 1-D cerium based on monovacant Keggin-type polyoxotungstate. J. Coord. Chem. 2011, 64, 2178–2185. [Google Scholar] [CrossRef]
- Ma, P.; Si, Y.; Wan, R.; Zhang, S.; Wang, J.; Niu, J. Synthesis, crystal structure, and properties of a 1-D terbium-substituted monolacunary Keggin-type polyoxotungstate . Spectrochim. Acta—A Mol. Biomol. Spectrosc. 2015, 138, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Contant, R. Relations entre les tungstophosphates apparentés à l’anion PW12O403−. Synthèse et propriétés d’un nouveau polyoxotungstophosphate lacunaire K10P2W20O70·24H2O. Can. J. Chem. 1987, 65, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Ln | 1, P–1 | 2, P–1 | 3, P21/c | |||
---|---|---|---|---|---|---|
Pr | 2498 | 11.82 12.28 19.62 94.6 91.0 118.1 | 6053 | 13.11 22.08 21.35 90 101.7 90 | ||
Eu | 2386 | 11.8 11.9 19.4 96.0 92.1 117.7 | 3305 | 12.81 13.04 23.41 73.1 83.9 62.1 | 5856 | 13.0 22.1 20.7 90 100.0 90 |
Gd | 2380 | 11.73 11.92 19.39 95.85 92.30 117.57 | 3289 | 12.8 13.0 23.3 73.8 84.3 61.8 | 5799 | 12.96 22.10 20.68 90 100.11 90 |
Tb | 2407 | 11.75 11.97 19.53 96.1 92.1 117.7 | ||||
Dy | 3267 | 12.72 13.04 23.20 74.0 81.3 62.1 |
V | a | b | c | β | |
---|---|---|---|---|---|
crystal 1 | 5969.5 (9) | 13.0360 (8) | 21.9985 (11) | 21.228 (2) | 101.300 (9) |
crystal 2 | 5889.3 (9) | 13.0069 (10) | 22.0055 (16) | 20.908 (3) | 100.228 (9) |
crystal 3 | 5878.9 (6) | 13.0061 (7) | 22.0170 (14) | 20.858 (2) | 100.174 (6) |
crystal 4 | 5851.2 (5) | 13.0038 (10) | 21.9926 (12) | 20.7695 (12) | 99.905 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korenev, V.S.; Sukhikh, T.S.; Sokolov, M.N. A Series of Lanthanide Complexes with Keggin-Type Monolacunary Phosphotungstate: Synthesis and Structural Characterization. Inorganics 2023, 11, 327. https://doi.org/10.3390/inorganics11080327
Korenev VS, Sukhikh TS, Sokolov MN. A Series of Lanthanide Complexes with Keggin-Type Monolacunary Phosphotungstate: Synthesis and Structural Characterization. Inorganics. 2023; 11(8):327. https://doi.org/10.3390/inorganics11080327
Chicago/Turabian StyleKorenev, Vladimir S., Taisiya S. Sukhikh, and Maxim N. Sokolov. 2023. "A Series of Lanthanide Complexes with Keggin-Type Monolacunary Phosphotungstate: Synthesis and Structural Characterization" Inorganics 11, no. 8: 327. https://doi.org/10.3390/inorganics11080327
APA StyleKorenev, V. S., Sukhikh, T. S., & Sokolov, M. N. (2023). A Series of Lanthanide Complexes with Keggin-Type Monolacunary Phosphotungstate: Synthesis and Structural Characterization. Inorganics, 11(8), 327. https://doi.org/10.3390/inorganics11080327