The Effect of the Saudi Haloxylon ammodendron Shrub on Silver Nanoparticles: Optimal Biosynthesis, Characterization, Removability of Mercury Ions, Antimicrobial and Anticancer Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mechanism of Formation of Silver Nanoparticles
2.2. UV-Spectroscopy Analysis
2.2.1. The Reactant Volume Ratio
2.2.2. The pH Factor
2.2.3. The Reaction Temperature
2.3. X-ray Diffraction Patters Analysis
2.4. SEM Analysis
2.5. FTIR Analysis
2.6. Mercury Ions (Hg2+) Sensing Analysis
2.7. Antibacterial and Antifungal Activities
2.8. Anticancer Activity
3. Materials and Instruments
3.1. Materials
3.2. The Haloxylon ammodendron Ethanolic Extract Preparation
3.3. The Biosynthesis of Ag Nanoparticles
3.3.1. The Reactant Volume Ratio
3.3.2. The pH
3.3.3. The Reaction Temperature
3.4. Characterization Instrumentation and Techniques
3.5. In Vitro Antimicrobial Studies
3.6. Anticancer Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Almosabbeh, I.A.; Almoree, M.A. The relationship between manufacturing production and economic growth in the Kingdom of Saudi Arabia. J. Econ. Stud. 2018, 45, 674–690. [Google Scholar] [CrossRef]
- DeNicola, E.; Aburizaiza, O.S.; Siddique, A.; Khwaja, H.; Carpenter, D.O. Climate change and water scarcity: The case of Saudi Arabia. Ann. Glob. Health 2015, 81, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, A.M.; Alamri, Y.A. The impact of the green Middle East initiative on sustainable development in the Kingdom of Saudi Arabia. J. Saudi Soc. Agric. Sci. 2023, 22, 35–46. [Google Scholar] [CrossRef]
- Almulhim, A.I. Understanding public awareness and attitudes toward renewable energy resources in Saudi Arabia. Renew. Energy 2022, 192, 572–582. [Google Scholar] [CrossRef]
- Gadhoum, Y. A Proposed Model of a Future University in the Era of the Artificial Intelligence Transformative Society: From Why to How. Creat. Educ. 2022, 13, 1098–1119. [Google Scholar] [CrossRef]
- Makki, A.A.; Alqahtani, A.Y. Modeling the Enablers to FinTech Innovation in Saudi Arabia: A Hybrid Approach Using ISM and ANP. Systems 2022, 10, 181. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Kumar, L.; Mohan, L.; Anand, S.; Bhardwaj, D.; Bharadvaja, N. Phyconanoremediation: A sustainable approach to deal with environmental pollutants heavy metals and dyes. Vegetos 2022, 1–16. [Google Scholar] [CrossRef]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef]
- Bhan, A.; Sarkar, N.N. Mercury in the environment: Effect on health and reproduction. Rev. Environ. Health 2005, 20, 39–56. [Google Scholar] [CrossRef]
- Kao, R.T.; Dault, S.; Pichay, T. Understanding the mercury reduction issue: The impact of mercury on the environment and human health. J. Calif. Dent. Assoc. 2004, 32, 574–579. [Google Scholar] [CrossRef]
- Teng, H.; Altaf, A.R. Elemental mercury (Hg0) emission, hazards, and control: A brief review. J. Hazard. Mater. Adv. 2022, 5, 100049. [Google Scholar] [CrossRef]
- Zolnikov, T.R.; Ortiz, D.R. A systematic review on the management and treatment of mercury in artisanal gold mining. Sci. Total Environ. 2018, 633, 816–824. [Google Scholar] [CrossRef]
- Kumari, S.; Jamwal, R.; Mishra, N.; Singh, D.K. Recent developments in environmental mercury bioremediation and its toxicity: A review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100283. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mohammadi, L.; Ansari-Moghaddam, A.; Mahvi, A.H. Heavy metals removal from aqueous environments by electrocoagulation process—A systematic review. J. Environ. Health Sci. Eng. 2015, 13, 74. [Google Scholar] [CrossRef] [Green Version]
- Qadri, R.; Faiq, M.A. Freshwater pollution: Effects on aquatic life and human health. In Fresh Water Pollution Dynamics and Remediation; Qadri, H., Bhat, R., Mehmood, M., Dar, G., Eds.; Springer: Singapore, 2020; pp. 15–26. [Google Scholar] [CrossRef]
- Daud, M.K.; Nafees, M.; Ali, S.; Rizwan, M.; Bajwa, R.A.; Shakoor, M.B.; Arshad, M.U.; Chatha, S.A.S.; Deeba, F.; Murad, W. Drinking water quality status and contamination in Pakistan. BioMed Res. Int. 2017, 2017, 7908183. [Google Scholar] [CrossRef] [Green Version]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Mallikarjunaiah, S.; Pattabhiramaiah, M.; Metikurki, B. Application of nanotechnology in the bioremediation of heavy metals and wastewater management. In Nanotechnology for Food, Agriculture, and Environment. Nanotechnology in the Life Sciences; Thangadurai, D., Sangeetha, J., Prasad, R., Eds.; Springer: Cham, Switzerland, 2020; pp. 297–321. [Google Scholar] [CrossRef]
- Cheriyamundath, S.; Vavilala, S.L. Nanotechnology-based wastewater treatment. Water Environ. J. 2021, 35, 123–132. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Qiu, Y.; Liu, X.; Huang, W.; Yan, N.; Qu, Z. Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic waste water. J. Hazard. Mater. 2020, 389, 121824. [Google Scholar] [CrossRef]
- Pacheco, S.; Medina, M.; Valencia, F.; Tapia, J. Removal of inorganic mercury from polluted water using structured nanoparticles. J. Environ. Eng. 2006, 132, 342–349. [Google Scholar] [CrossRef]
- Sanjeevappa, H.K.; Nilogal, P.; Rayaraddy, R.; Martis, L.J.; Osman, S.M.; Badiadka, N.; Yallappa, S. Biosynthesized unmodified silver nanoparticles: A colorimetric optical sensor for detection of Hg2+ ions in aqueous solution. Results Chem. 2022, 4, 100507. [Google Scholar] [CrossRef]
- Parham, H.; Zargar, B.; Shiralipour, R. Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. J. Hazard. Mater. 2012, 205, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and application of Granular activated carbon from biomass waste materials for water treatment: A review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Pilaquinga, F.; Morey, J.; Vivas-Rodríguez, M.; Yánez-Jácome, G.; Fernández, L.; de las Nieves Piña, M. Colorimetric Detection and Adsorption of Mercury Using Silver Nanoparticles: A Bibliographic and Patent Review. Nanosci. Nanotechnol.-Asia 2021, 11, 4–23. [Google Scholar] [CrossRef]
- Dey, S.; Kumar, A.; Mahto, A.; Raval, I.H.; Modi, K.M.; Haldar, S.; Jain, V.K. Oxacalix [4] arene templated silver nanoparticles as dual readout sensor: Developing portable kit for rapid detection of methylmercury and its speciation. Sens. Actuators B Chem. 2020, 317, 128180. [Google Scholar] [CrossRef]
- Durán, N.; Durán, M.; De Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar] [CrossRef]
- Dilshad, E.; Bibi, M.; Sheikh, N.A.; Tamrin, K.F.; Mansoor, Q.; Maqbool, Q.; Nawaz, M. Synthesis of functional silver nanoparticles and microparticles with modifiers and evaluation of their antimicrobial, anticancer, and antioxidant activity. J. Funct. Biomater. 2020, 11, 76. [Google Scholar] [CrossRef]
- Abd El-Halim, H.F.; Mohamed, G.G.; Anwar, M.N. Antimicrobial and anticancer activities of Schiff base ligand and its transition metal mixed ligand complexes with heterocyclic base. Appl. Organomet. Chem. 2018, 32, e3899. [Google Scholar] [CrossRef]
- Osman, M.S.; Al-qubati, M.; Saeed, M.; Abdulqawi, N.; Algradee, M.A.; Alwan, A.; Sultan, A.M. Effective inhibition of waterborne and fungal pathogens using ZnO nanoparticles prepared from an aqueous extract of propolis: Optimum biosynthesis, characterization, and antimicrobial activity. Appl. Nanosci. 2023, 13, 4515–4526. [Google Scholar] [CrossRef]
- Al-Fakeh, M.S.; Osman, S.O.M.; Gassoumi, M.; Rabhi, M.; Omer, M. Characterization, antimicrobial and anticancer properties of palladium nanoparticles biosynthesized optimally using Saudi propolis. Nanomaterials 2021, 11, 2666. [Google Scholar] [CrossRef]
- Lovio-Fragoso, J.P.; De Jesús-Campos, D.; Razo-Mendivil, F.G.; García-Coronado, H.; Domínguez-Rosas, E.; Trillo-Hernández, E.A.; Hayano-Kanashiro, C.; Hernández-Oñate, M.Á. Desert plant transcriptomics and adaptation to abiotic stress. In Transcriptome Profiling; Elsevier: Amsterdam, The Netherlands, 2023; pp. 199–256. [Google Scholar]
- Sage, R.F.; Sultmanis, S. Why are there no C4 forests? J. Plant Physiol. 2016, 203, 55–68. [Google Scholar] [CrossRef]
- Squires, V.R.; Qi, L. Sustainable Land Management in Greater Central Asia: An Integrated and Regional Perspective; Routledge: London, UK, 2017; ISBN 1317394054. [Google Scholar]
- Öztürk, M.; Altay, V.; Nazish, M.; Ahmad, M.; Zafar, M. Halophyte Plant Diversity and Public Health; Springer Nature: Berlin, Germany, 2023; ISBN 3031219449. [Google Scholar]
- Kang, W.; Song, Y. Chemical Constituents of Haloxylon ammodendron. Chem. Nat. Compd. 2015, 51, 557–558. [Google Scholar] [CrossRef]
- Haida, S.; Kribii, A. Chemical composition, phenolic content and antioxidant capacity of Haloxylon scoparium extracts. South Afr. J. Bot. 2020, 131, 151–160. [Google Scholar] [CrossRef]
- Lachkar, N.; Lamchouri, F.; Bouabid, K.; Boulfia, M.; Senhaji, S.; Stitou, M.; Toufik, H. Mineral composition, phenolic content, and in vitro antidiabetic and antioxidant properties of aqueous and organic extracts of Haloxylon scoparium aerial parts. Evid.-Based Complement. Altern. Med. 2021, 2021, 9011168. [Google Scholar] [CrossRef]
- Litvin, V.A.; Galagan, R.L.; Minaev, B.F. Kinetic and mechanism formation of silver nanoparticles coated by synthetic humic substances. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 414, 234–243. [Google Scholar] [CrossRef]
- Hebeish, A.A.; El-Rafie, M.H.; Abdel-Mohdy, F.A.; Abdel-Halim, E.S.; Emam, H.E. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr. Polym. 2010, 82, 933–941. [Google Scholar] [CrossRef]
- Amin, M.; Anwar, F.; Janjua, M.R.S.A.; Iqbal, M.A.; Rashid, U. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: Characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci. 2012, 13, 9923–9941. [Google Scholar] [CrossRef]
- McQuillan, J.S.; Groenaga Infante, H.; Stokes, E.; Shaw, A.M. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 2012, 6, 857–866. [Google Scholar] [CrossRef]
- Nayeri, F.D.; Mafakheri, S.; Mirhosseini, M. Phyto-mediated silver nanoparticles via Mellisa officinalis aqueous and methanolic extracts: Synthesis, characterization and biological properties. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Al-Zahrani, S.; Astudillo-Calderón, S.; Pintos, B.; Pérez-Urria, E.; Manzanera, J.A.; Martín, L.; Gomez-Garay, A. Role of synthetic plant extracts on the production of silver-derived nanoparticles. Plants 2021, 10, 1671. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.A.; Kabary, H.; Khedr, M.; Emam, A.N. Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesized silver nanoparticles by two marine-derived actinomycete. RSC Adv. 2020, 10, 10361–10367. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, O.A.D.; Moiraghi, R.; Macchione, M.A.; Godoy, J.A.; Pérez, M.A.; Coronado, E.A.; Macagno, V.A. Silver oxide particles/silver nanoparticles interconversion: Susceptibility of forward/backward reactions to the chemical environment at room temperature. RSC Adv. 2012, 2, 2923–2929. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Akhtar, K.; Seo, J.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Phytosynthesis of silver nanoparticles; naked eye cellulose filter paper dual mechanism sensor for mercury ions and ammonia in aqueous solution. J. Mater. Sci. Mater. Electron. 2019, 30, 7367–7383. [Google Scholar] [CrossRef]
- Hosseinpour-Mashkani, S.M.; Ramezani, M. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition. Mater. Lett. 2014, 130, 259–262. [Google Scholar] [CrossRef]
- Ghaemi, M.; Gholamipoor, S. Controllable synthesis and characterization of silver nanoparticles using Sargassum angostifolium. Iran. J. Chem. Chem. Eng. 2017, 1, 1–10. [Google Scholar]
- Zhao, X.; Yan, L.; Xu, X.; Zhao, H.; Lu, Y.; Wang, Y.; Jiang, C.; Shao, D.; Zhu, J.; Shi, J. Synthesis of silver nanoparticles and its contribution to the capability of Bacillus subtilis to deal with polluted waters. Appl. Microbiol. Biotechnol. 2019, 103, 6319–6332. [Google Scholar] [CrossRef]
- Gradess, R.; Abargues, R.; Habbou, A.; Canet-Ferrer, J.; Pedrueza, E.; Russell, A.; Valdés, J.L.; Martínez-Pastor, J.P. Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. J. Mater. Chem. 2009, 19, 9233–9240. [Google Scholar] [CrossRef]
- Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.O.; El-Naggar, K.; Khalil, M.M.H. Green Synthesis of Silver Nanoparticles using Egyptian Propolis Extract and its Antimicrobial Activity. Egypt. J. Chem. 2022, 65, 5–6. [Google Scholar]
- Han, Y.; Lupitskyy, R.; Chou, T.-M.; Stafford, C.M.; Du, H.; Sukhishvili, S. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: A quantitative correlation. Anal. Chem. 2011, 83, 5873–5880. [Google Scholar] [CrossRef]
- Abbasi, B.A.; Iqbal, J.; Nasir, J.A.; Zahra, S.A.; Shahbaz, A.; Uddin, S.; Hameed, S.; Gul, F.; Kanwal, S.; Mahmood, T. Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: Characterization and diverse biomedical applications. Microsc. Res. Tech. 2020, 83, 1308–1320. [Google Scholar] [CrossRef]
- Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 2011, 46, 2560–2566. [Google Scholar] [CrossRef]
- Anigol, L.B.; Charantimath, J.S.; Gurubasavaraj, P.M. Effect of concentration and pH on the size of silver nanoparticles synthesized by green chemistry. Org. Med. Chem. Int. J. 2017, 3, 1–5. [Google Scholar]
- Yang, Z.; Qian, H.; Chen, H.; Anker, J.N. One-pot hydrothermal synthesis of silver nanowires via citrate reduction. J. Colloid Interface Sci. 2010, 352, 285–291. [Google Scholar] [CrossRef]
- Nishimura, S.; Mott, D.; Takagaki, A.; Maenosono, S.; Ebitani, K. Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent. Phys. Chem. Chem. Phys. 2011, 13, 9335–9343. [Google Scholar] [CrossRef]
- Holder, C.F.; Schaak, R.E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef] [Green Version]
- Basak, M.; Rahman, M.L.; Ahmed, M.F.; Biswas, B.; Sharmin, N. The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach. J. Alloys Compd. 2022, 895, 162694. [Google Scholar] [CrossRef]
- Ameh, E.S. A review of basic crystallography and X-ray diffraction applications. Int. J. Adv. Manuf. Technol. 2019, 105, 3289–3302. [Google Scholar] [CrossRef]
- Yang, H.; Ren, Y.; Wang, T.; Wang, C. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract. Results Phys. 2016, 6, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Gauri, B.; Vidya, K.; Sharada, D.; Shobha, W. Synthesis and characterization of Ag/AgO nanoparticles as alcohol sensor. Res. J. Chem. Environ. 2016, 20, 1–5. [Google Scholar]
- Dhoondia, Z.H.; Chakraborty, H. Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater. Nanotechnol. 2012, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, P. Nachr Ges wiss goettingen. Math. Phys. 1918, 2, 98–100. [Google Scholar]
- Priya, M.M.; Selvi, B.K.; Paul, J.A. Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Dig. J. Nanomater. Biostruct. 2011, 6, 869–877. [Google Scholar]
- Wan Mat Khalir, W.K.A.; Shameli, K.; Jazayeri, S.D.; Othman, N.A.; Che Jusoh, N.W.; Hassan, N.M. Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Front. Chem. 2020, 8, 620. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy, Brooks; Cole Cengage Learn: Boston, MA, USA, 2009; pp. 381–417. [Google Scholar]
- Yu, L.; He, R.; Zhang, Y.; Gao, J. Effect of surface treatment on flexural and tribological properties of poly (p-phenylene benzobisoxazole)/polyimide composites under normal and elevated temperature. Materials 2018, 11, 2131. [Google Scholar] [CrossRef] [Green Version]
- Yong, N.L.; Ahmad, A.; Mohammad, A.W. Synthesis and characterization of silver oxide nanoparticles by a novel method. Int. J. Sci. Eng. Res 2013, 4. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=89e46bd619abcbf4e233925c6a26ffa47b755e6c (accessed on 5 June 2023).
- Hatamifard, A.; Nasrollahzadeh, M.; Sajadi, S.M. Biosynthesis, characterization and catalytic activity of an Ag/zeolite nanocomposite for base-and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of a variety of dyes at room temperature. New J. Chem. 2016, 40, 2501–2513. [Google Scholar] [CrossRef]
- Sanghi, R.; Verma, P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour. Technol. 2009, 100, 501–504. [Google Scholar] [CrossRef]
- Sujatha, V.; Kaviyasri, G.; Venkatesan, A.; Thirunavukkarasu, C.; Acharya, S.; Dayel, S.B.; Al-Ghamdi, S.; Abdelzaher, M.H.; Shahid, M.; Ramesh, T. Biomimetic formation of silver oxide nanoparticles through Diospyros montana bark extract: Its application in dye degradation, antibacterial and anticancer effect in human hepatocellular carcinoma cells. J. King Saud Univ. 2023, 35, 102563. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Prabakar, D.; Jacob, J.M.; Karuppusamy, I.; Saratale, R.G. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb. Pathog. 2018, 114, 41–45. [Google Scholar] [CrossRef]
- Jeeva, K.; Thiyagarajan, M.; Elangovan, V.; Geetha, N.; Venkatachalam, P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod. 2014, 52, 714–720. [Google Scholar] [CrossRef]
- Mustafa Nadhim Owaid, G.A.N.; Rasim Farraj Muslim, R.S.O. Synthesis, characterization and antitumor efficacy of silver nanoparticle from Agaricus bisporus pileus, Basidiomycota. Walailak J. Sci. Technol. (WJST) 2020, 17, 75–87. [Google Scholar] [CrossRef]
- Hemmati, S.; Rashtiani, A.; Zangeneh, M.M.; Mohammadi, P.; Zangeneh, A.; Veisi, H. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 2019, 158, 8–14. [Google Scholar] [CrossRef]
- Jemal, K.; Sandeep, B.V.; Pola, S. Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J. Nanomater. 2017, 2017, 4213275. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Li, W.-H. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crops Prod. 2013, 48, 81–88. [Google Scholar] [CrossRef]
- Leng, Z.; Wu, D.; Yang, Q.; Zeng, S.; Xia, W. Facile and one-step liquid phase synthesis of uniform silver nanoparticles reduction by ethylene glycol. Optik 2018, 154, 33–40. [Google Scholar] [CrossRef]
- Rajput, J.K. Bio-polyphenols promoted green synthesis of silver nanoparticles for facile and ultra-sensitive colorimetric detection of melamine in milk. Biosens. Bioelectron. 2018, 120, 153–159. [Google Scholar]
- Al-Hazmy, S.M.; Zouaghi, M.O.; Al-Johani, J.N.; Arfaoui, Y.; Al-Ashwal, R.; Hammami, B.; Alhagri, I.A.; Alhemiary, N.A.; Hamdi, N. Chemosensing Properties of Coumarin Derivatives: Promising Agents with Diverse Pharmacological Properties, Docking and DFT Investigation. Molecules 2022, 27, 5921. [Google Scholar] [CrossRef]
- Saeidnia, S.; Manayi, A.; Gohari, A.R.; Abdollahi, M. The story of beta-sitosterol-a review. Eur. J. Med. Plants 2014, 4, 590. [Google Scholar] [CrossRef]
- Pettit, G.R.; Meng, Y.; Herald, D.L.; Graham, K.A.N.; Pettit, R.K.; Doubek, D.L. Isolation and Structure of Ruprechstyril from Ruprechtia tangarana. J. Nat. Prod. 2003, 66, 1065–1069. [Google Scholar] [CrossRef]
- Meneses-Sagrero, S.E.; Navarro-Navarro, M.; Ruiz-Bustos, E.; Del-Toro-Sánchez, C.L.; Jiménez-Estrada, M.; Robles-Zepeda, R.E. Antiproliferative activity of spinasterol isolated of Stegnosperma halimifolium (Benth, 1844). Saudi Pharm. J. 2017, 25, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Cornard, J.P.; Merlin, J.C. Spectroscopic and structural study of complexes of quercetin with Al (III). J. Inorg. Biochem. 2002, 92, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Schiesaro, I.; Burratti, L.; Meneghini, C.; Fratoddi, I.; Prosposito, P.; Lim, J.; Scheu, C.; Venditti, I.; Iucci, G.; Battocchio, C. Hydrophilic silver nanoparticles for Hg (II) detection in water: Direct evidence for mercury–silver interaction. J. Phys. Chem. C 2020, 124, 25975–25983. [Google Scholar] [CrossRef]
- Gehlen, M.H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100338. [Google Scholar] [CrossRef]
- El-Daly, S.A.; Rahman, M.M.; Alamry, K.A.; Asiri, A.M. Fluorescence quenching of perylene DBPI dye by colloidal low-dimensional gold nanoparticles. J. Fluoresc. 2015, 25, 973–978. [Google Scholar] [CrossRef]
- Morikawa, T.; Xie, H.; Pan, Y.; Ninomiya, K.; Yuan, D.; Jia, X.; Yoshikawa, M.; Nakamura, S.; Matsuda, H.; Muraoka, O. A review of biologically active natural products from a desert plant Cistanche tubulosa. Chem. Pharm. Bull. 2019, 67, 675–689. [Google Scholar] [CrossRef] [Green Version]
- Kailasa, S.K.; Park, T.-J.; Rohit, J.V.; Koduru, J.R. Antimicrobial activity of silver nanoparticles. In Nanoparticles in Pharmacotherapy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 461–484. [Google Scholar]
- Hamida, R.S.; Ali, M.A.; Alfassam, H.E.; Momenah, M.A.; Alkhateeb, M.A.; Bin-Meferij, M.M. One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon Salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities. Pharmaceutics 2023, 15, 529. [Google Scholar] [CrossRef]
- Ullah, I.; Khalil, A.T.; Ali, M.; Iqbal, J.; Ali, W.; Alarifi, S.; Shinwari, Z.K. Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by generating reactive oxygen species and activating caspase 3 and 9 enzyme activities. Oxid. Med. Cell. Longev. 2020, 2020, 1215395. [Google Scholar] [CrossRef]
- Hailan, W.A.; Al-Anazi, K.M.; Farah, M.A.; Ali, M.A.; Al-Kawmani, A.A.; Abou-Tarboush, F.M. Reactive oxygen species-mediated cytotoxicity in liver carcinoma cells induced by silver nanoparticles biosynthesized using Schinus molle extract. Nanomaterials 2022, 12, 161. [Google Scholar] [CrossRef]
- Guo, D.; Zhu, L.; Huang, Z.; Zhou, H.; Ge, Y.; Ma, W.; Wu, J.; Zhang, X.; Zhou, X.; Zhang, Y. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 2013, 34, 7884–7894. [Google Scholar] [CrossRef]
Functional Group | HME | Silver/Silver Oxide Nanoparticles |
---|---|---|
Peak Assignment (cm−1) | ||
O-H stretching vibration [50] | 3222 | 3293 |
C-H stretching vibration [75,76] | 2847 and 2918 | 2848 and 2916 |
C-O stretching vibration [77] | 1725 | 1727 |
C=O stretching vibration [78,79] | 1514 and 1613 | 1515 and 1615 |
O-H curvature vibration [80] | 1448 | 1454 |
C-N stretching vibration [81,82] | 1393 and 1232 | 1375 and 1233 |
C-OH stretching vibration [83,84] | 1029, 898, and 932 | 1033, 898, and 930 |
=C-H bending vibration [85] | 716, 830 | 718, 828 |
Microbes Name | Zone of Inhibition in mm | |||
---|---|---|---|---|
HME Extract | AgNps | Ampicillin | Colitrimazole | |
E. coli | 13.21 | 19.03 | 23.55 | ---- |
Pseudomonas aeuroginosa | 10.50 | 17.02 | 34.46 | ---- |
S. aureus | 11.14 | 18.20 | 25.47 | --- |
Bacillus subtilis | 12.56 | 18.24 | 32.81 | --- |
C. Albicans | 14.16 | 17.34 | --- | 23.75 |
A. flavus | 12.27 | 16.14 | ---- | 25.38 |
Comp. Name | * (IC50 (µM)) | ||
---|---|---|---|
WI38 | HEPG-2 | MCF-7 | |
HME | 33.02 ± 3.9 | 27.15 ± 2.1 | 37.04 ± 2.2 |
AgNPs | 14.07 ± 2.5 | 15.58 ± 3.6 | 13.39 ± 3.4 |
DOX | 6.72 ± 0.5 | 4.50 ± 0.2 | 4.17 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hakimi, A.N.; Alresheedi, T.M.; Albarrak, R.A. The Effect of the Saudi Haloxylon ammodendron Shrub on Silver Nanoparticles: Optimal Biosynthesis, Characterization, Removability of Mercury Ions, Antimicrobial and Anticancer Activities. Inorganics 2023, 11, 246. https://doi.org/10.3390/inorganics11060246
Al-Hakimi AN, Alresheedi TM, Albarrak RA. The Effect of the Saudi Haloxylon ammodendron Shrub on Silver Nanoparticles: Optimal Biosynthesis, Characterization, Removability of Mercury Ions, Antimicrobial and Anticancer Activities. Inorganics. 2023; 11(6):246. https://doi.org/10.3390/inorganics11060246
Chicago/Turabian StyleAl-Hakimi, Ahmed N., Tahani M. Alresheedi, and Reema A. Albarrak. 2023. "The Effect of the Saudi Haloxylon ammodendron Shrub on Silver Nanoparticles: Optimal Biosynthesis, Characterization, Removability of Mercury Ions, Antimicrobial and Anticancer Activities" Inorganics 11, no. 6: 246. https://doi.org/10.3390/inorganics11060246
APA StyleAl-Hakimi, A. N., Alresheedi, T. M., & Albarrak, R. A. (2023). The Effect of the Saudi Haloxylon ammodendron Shrub on Silver Nanoparticles: Optimal Biosynthesis, Characterization, Removability of Mercury Ions, Antimicrobial and Anticancer Activities. Inorganics, 11(6), 246. https://doi.org/10.3390/inorganics11060246