3–(2–Pyridyl)pyrazole Based Luminescent 1D-Coordination Polymers and Polymorphic Complexes of Various Lanthanide Chlorides Including Orange-Emitting Cerium(III)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Analysis
2.2. Photophysical Properties
2.2.1. UV–VIS–NIR Absorption Spectra
2.2.2. Emission and Excitation Spectra
2.3. Thermal Analysis
3. Materials and Methods
3.1. General Procedures
3.2. X-ray Crystallography
3.3. Synthesis
3.3.1. Synthesis of 1∞[Ln2(2–PyPzH)4Cl6], Ln = La (1), Nd (2), Sm (3)
3.3.2. Synthesis of α–[Ln2(2–PyPzH)4Cl6], Ln = Sm (4), Eu (5), Gd (6)
3.3.3. Synthesis of β–[Ln2(2–PyPzH)4Cl6], Ln = Sm (8), Eu (9)
3.3.4. Synthesis of [Ce(2–PyPzH)3Cl3] (11)
3.3.5. Synthesis of [Ln(2–PyPzH)2Cl3], Ln = Tb (12), Dy (13), Ho (14), Er (15)
3.3.6. Single Crystals of α–[Tb2(2–PyPzH)4Cl6] (7)
3.3.7. Single Crystals of β–[Gd2(2–PyPzH)4Cl6] (10)
3.3.8. Single Crystals of [Gd2(2–PyPzH)3(2–PyPz)Cl5] (16) and [Gd3(2–PyPzH)8Cl8]Cl (17)
3.3.9. Single Crystals of [PyH][Tb(2–PyPzH)2Cl4] (18)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forsberg, J.H. Complexes of lanthanide(III) ions with nitrogen donor ligands. Coord. Chem. Rev. 1973, 10, 195–226. [Google Scholar] [CrossRef]
- Youssef, H.; Schäfer, T.C.; Becker, J.; Sedykh, A.E.; Basso, L.; Pietzonka, C.; Taydakov, I.V.; Kraus, F.; Müller-Buschbaum, K. 3D-Frameworks and 2D-networks of lanthanide coordination polymers with 3-pyridylpyrazole: Photophysical and magnetic properties. Dalton Trans. 2022, 51, 14673–14685. [Google Scholar] [CrossRef] [PubMed]
- Drew, M.G.; Foreman, M.R.S.; Hudson, M.J.; Kennedy, K.F. Structural studies of lanthanide complexes with tetradentate nitrogen ligands. Inorg. Chim. Acta 2004, 357, 4102–4112. [Google Scholar] [CrossRef]
- Miguirditchian, M.; Guillaneux, D.; François, N.; Airvault, S.; Ducros, S.; Thauvin, D.; Madic, C.; Illemassène, M.; Lagarde, G.; Krupa, J.C. Complexation of lanthanide(III) and actinide(III) cations with tridentate nitrogen-donor ligands: A luminescence and spectrophotometric study. Nucl. Sci. Eng. 2006, 153, 223–232. [Google Scholar] [CrossRef]
- Sedykh, A.E.; Bissert, R.; Kurth, D.G.; Müller-Buschbaum, K. Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes. Z. Kristallogr. Cryst. Mater. 2020, 235, 353–363. [Google Scholar] [CrossRef]
- Höller, C.J.; Mai, M.; Feldmann, C.; Müller-Buschbaum, K. The interaction of rare earth chlorides with 4,4′-bipyridine for the reversible formation of template based luminescent Ln-N-MOFs. Dalton Trans. 2010, 39, 461–468. [Google Scholar] [CrossRef]
- Youssef, H.; Sedykh, A.E.; Becker, J.; Schäfer, T.; Taydakov, I.V.; Li, H.R.; Müller-Buschbaum, K. Variable luminescence and chromaticity of homoleptic frameworks of the lanthanides together with pyridylpyrazolates. Chem. Eur. J. 2021, 27, 16634–16641. [Google Scholar] [CrossRef]
- Sedykh, A.E.; Kurth, D.G.; Müller-Buschbaum, K. Two series of lanthanide coordination polymers and complexes with 4′-phenylterpyridine and their luminescence properties. Eur. J. Inorg. Chem. 2019, 2019, 4564–4571. [Google Scholar] [CrossRef]
- Piguet, C.; Williams, A.F.; Bernardinelli, G.; Buenzli, J.C.G. Structural and photophysical properties of lanthanide complexes with planar aromatic tridentate nitrogen ligands as luminescent building blocks for triple-helical structures. Inorg. Chem. 1993, 32, 4139–4149. [Google Scholar] [CrossRef]
- Ekberg, C.; Fermvik, A.; Retegan, T.; Skarnemark, G.; Foreman, M.; Hudson, M.; Englund, S.; Nilsson, M. An overview and historical look back at the solvent extraction using nitrogen donor ligands to extract and separate An(III) from Ln(III). Radiochim. Acta 2008, 96, 225–233. [Google Scholar] [CrossRef]
- Matthes, P.R.; Schönfeld, F.; Zottnick, S.H.; Müller-Buschbaum, K. Post-synthetic shaping of porosity and crystal structure of Ln-Bipy-MOFs by thermal treatment. Molecules 2015, 20, 12125–12153. [Google Scholar] [CrossRef] [PubMed]
- Meihaus, K.R.; Minasian, S.G.; Lukens, W.W., Jr.; Kozimor, S.A.; Shuh, D.K.; Tyliszczak, T.; Long, J.R. Influence of pyrazolate vs. N-heterocyclic carbene ligands on the slow magnetic relaxation of homoleptic trischelate lanthanide(III) and uranium(III) complexes. J. Am. Chem. Soc. 2014, 136, 6056–6068. [Google Scholar] [CrossRef]
- Hassan, S.S.; Mohamed, E.F. Antimicrobial, antioxidant and antitumor activities of nano-structure Eu(III) and La(III) complexes with nitrogen donor tridentate ligands. Appl. Organomet. Chem. 2020, 34, e5258. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; Eliseeva, S.V. Basics of lanthanide photophysics. In Springer Series on Fluorescence: Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects; Wolfbeis, O.S., Hof, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7, pp. 1–46. [Google Scholar]
- Yin, H.; Carroll, P.J.; Anna, J.M.; Schelter, E.J. Luminescent Ce(III) complexes as stoichiometric and catalytic photoreductants for halogen atom abstraction reactions. J. Am. Chem. Soc. 2015, 137, 9234–9237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Y.; Sergentu, D.-C.; Yin, H.; Zabula, A.V.; Cheisson, T.; McSkimming, A.; Manor, B.C.; Carroll, P.J.; Anna, J.M.; Autschbach, J.; et al. Understanding and controlling the emission brightness and color of molecular cerium luminophores. J. Am. Chem. Soc. 2018, 140, 4588–4595. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist-Reis, P.; Réal, F.; Janicki, R.; Vallet, V. Unraveling the ground state and excited state structures and dynamics of hydrated Ce3+ ions by experiment and theory. Inorg. Chem. 2018, 57, 10111–10121. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Zhan, G.; Fang, H.; Yang, H.; Huang, T.; Zhang, Y.; Jiang, N.; Duan, L.; Liu, Z.; et al. Deep-blue organic light-emitting diodes based on a doublet d–f transition cerium(III) complex with 100% exciton utilization efficiency. Light Sci. Appl. 2020, 9, 157. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, L.; Zhan, G.; Liu, Z.; Bian, Z.; Huang, C. Efficient rare earth cerium(III) complex with nanosecond d−f emission for blue organic light-emitting diodes. Natl. Sci. Rev. 2021, 8, nwaa193. [Google Scholar] [CrossRef]
- Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects. Chem. Rev. 2017, 117, 4488–4527. [Google Scholar] [CrossRef]
- Yin, H.; Carroll, P.J.; Manor, B.C.; Anna, J.M.; Schelter, E.J. Cerium photosensitizers: Structure–function relationships and applications in photocatalytic aryl coupling reactions. J. Am. Chem. Soc. 2016, 138, 5984–5993. [Google Scholar] [CrossRef]
- Matthes, P.R.; Müller-Buschbaum, K. Synthesis and characterization of the cerium(III) UV-emitting 2D-coordination polymer 2∞[Ce2Cl6(4, 4′-bipyridine)4]·py. Z. Anorg. Allg. Chem. 2014, 640, 2847–2851. [Google Scholar] [CrossRef]
- Meyer, L.V.; Schönfeld, F.; Zurawski, A.; Mai, M.; Feldmann, C.; Müller-Buschbaum, K. A blue luminescent MOF as a rapid turn-off/turn-on detector for H2O, O2 and CH2Cl2, MeCN: 3∞[Ce(Im)3ImH]·ImH. Dalton Trans. 2015, 44, 4070–4079. [Google Scholar] [CrossRef] [PubMed]
- Bünzli, J.-C.G. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293, 19–47. [Google Scholar] [CrossRef]
- Eliseeva, S.V.; Bünzli, J.-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef] [PubMed]
- Weissman, S. Intramolecular energy transfer the fluorescence of complexes of europium. J. Chem. Phys. 1942, 10, 214–217. [Google Scholar] [CrossRef]
- Crosby, G.; Whan, R.; Alire, R. Intramolecular energy transfer in rare earth chelates. Role of the triplet state. J. Chem. Phys. 1961, 34, 743–748. [Google Scholar] [CrossRef]
- Frey, S.T.; Horrocks, W.D., Jr. Complexation, luminescence, and energy transfer of Ce3+ with a series of multidentate amino phosphonic acids in aqueous solution. Inorg. Chem. 1991, 30, 1073–1079. [Google Scholar] [CrossRef]
- Blasse, G.; Grabmaier, B.C. A general introduction to luminescent materials. In Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994; pp. 1–9. [Google Scholar]
- Fang, P.; Wang, L.; Zhan, G.; Yan, W.; Huo, P.; Ying, A.; Zhang, Y.; Zhao, Z.; Yu, G.; Huang, Y.; et al. Lanthanide cerium(III) tris(pyrazolyl)borate complexes: Efficient blue emitters for doublet organic light-emitting diodes. ACS Appl. Mater. Interfaces 2021, 13, 45686–45695. [Google Scholar] [CrossRef]
- Kodama, N.; Tanii, Y.; Yamaga, M. Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7. J. Lumin. 2000, 87, 1076–1078. [Google Scholar] [CrossRef]
- Kim, G.C.; Park, H.L.; Yun, S.I.; Moon, B.G. Solid solubility limit of cerium in CaS:Ce3+ phosphor. J. Mater. Sci. Lett. 1986, 5, 359–360. [Google Scholar] [CrossRef]
- Van Krevel, J.W.H.; Hintzen, H.T.; Metselaar, R.; Meijerink, A. Long wavelength Ce3+ emission in Y–Si–O–N materials. J. Alloys Compd. 1998, 268, 272–277. [Google Scholar] [CrossRef]
- Gauthier, G.; Jobic, S.; Evain, M.; Koo, H.-J.; Whangbo, M.-H.; Fouassier, C.; Brec, R. Syntheses, structures, and optical properties of yellow Ce2SiS5, Ce6Si4S17, and Ce4Si3S12 materials. Chem. Mater. 2003, 15, 828–837. [Google Scholar] [CrossRef]
- Blasse, G.; Bril, A. A new phosphor for flying-spot cathode-ray tubes for color television: Yellow-emitting Y3Al5O12–Ce3+. Appl. Phys. Lett. 1967, 11, 53–55. [Google Scholar] [CrossRef]
- Wu, D.; Hao, Z.; Zhang, X.; Pan, G.-H.; Luo, Y.; Zhang, L.; Zhao, H.; Zhang, J. Efficient energy back transfer from Ce3+ 5d state to Pr3+ 1D2 level in Lu3Al5O12 upon Pr3+ 4f5d excitation. J. Lumin. 2017, 186, 170–174. [Google Scholar] [CrossRef]
- Peng, D.A.I.; Cheng, J.I.; Liming, S.H.E.N.; Qi, Q.I.A.N.; Guobiao, G.U.O.; Zhang, X.; Ningzhong, B.A.O. Photoluminescence properties of YAG: Ce3+,Pr3+ nano-sized phosphors synthesized by a modified co-precipitation method. J. Rare Earths 2017, 35, 341–346. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, X.; Zhou, S.; Yin, M.; Chen, Y. Evaluation of critical distances for energy transfer between Pr3+ and Ce3+ in yttrium aluminium garnet. J. Appl. Phys. 2016, 120, 093104. [Google Scholar] [CrossRef]
- Ogiegło, J.M.; Zych, A.; Jüstel, T.; Meijerink, A.; Ronda, C.R. Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Pr3+. Opt. Mater. 2013, 35, 322–331. [Google Scholar] [CrossRef]
- Kowalski, R.M.; Komar, J.; Solarz, P. On the combination of praseodymium and cerium, a new concept of improving orange-red luminescence. J. Alloys Compd. 2020, 848, 156228. [Google Scholar] [CrossRef]
- Blagden, N.; Davey, R.J. Polymorph selection: Challenges for the future? Cryst. Growth Des. 2003, 3, 873–885. [Google Scholar] [CrossRef]
- Meundaeng, N.; Rujiwatra, A.; Prior, T.J. Polymorphism in metal complexes of thiazole-4-carboxylic acid. Transit. Met. Chem. 2016, 41, 783–793. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Eyring, L. The binary rare earth oxides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Jr., Eyring, L., Eds.; Elsevier BV: Amsterdam, The Netherlands, 1979; Volume 3, pp. 337–399. [Google Scholar]
- Kumar, R.; Singh, U.P. Molecular structure, photophysical and thermal properties of samarium(III) complexes. J. Mol. Struct. 2008, 875, 427–434. [Google Scholar] [CrossRef]
- Mazurek, J.; Lisowski, J. Chiral macrocyclic lanthanide complexes derived from (1R, 2R)-1, 2-diphenylethylenediamine and 2,6-diformylpyridine. Polyhedron 2003, 22, 2877–2883. [Google Scholar] [CrossRef]
- Matthes, P.R.; Nitsch, J.; Kuzmanoski, A.; Feldmann, C.; Steffen, A.; Marder, T.B.; Müller-Buschbaum, K. The series of rare earth complexes [Ln2Cl6(μ-4,4′-bipy)(py)6], Ln=Y, Pr, Nd, Sm-Yb: A molecular model system for luminescence properties in MOFs based on LnCl3 and 4,4′-bipyridine. Chem. Eur. J. 2013, 19, 17369–17378. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.J.; Moretta, F.; Holloway, A.T.; Pikramenou, Z. Evaluation of quinoline as a remote sensitiser for red and near-infrared emissive lanthanide(III) ions in solution and the solid state. Dalton Trans. 2012, 41, 13138–13146. [Google Scholar] [CrossRef] [PubMed]
- Mahato, M.; Jana, P.P.; Harms, K.; Nayek, H.P. Lanthanide(III) morpholine 4-dithiocarbamate complexes: Pr(III) derivative shows first example of polymeric lanthanide(III) dithiocarbamate. RSC Adv. 2015, 5, 62167–62172. [Google Scholar] [CrossRef]
- Chow, C.Y.; Eliseeva, S.V.; Trivedi, E.R.; Nguyen, T.N.; Kampf, J.W.; Petoud, S.; Pecoraro, V.L. Ga3+/Ln3+ metallacrowns: A promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains. J. Am. Chem. Soc. 2016, 138, 5100–5109. [Google Scholar] [CrossRef]
- Satheesh Chandran, P.R.; Soumya Mol, U.S.; Drisya, R.; Sudarsanakumar, M.R.; Prathapachandra Kurup, M.R. Structural studies of poly [(μ2-acetato)(μ3-5-aminoisophthalato) diaquacerium(III) monohydrate]: A new three dimensional fluorescent metal-organic framework constructed from dimers of CeO9 polyhedra with hydrophilic ‘S’ shaped channels. J. Mol. Struct. 2017, 1137, 396–402. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, H.; Jiang, S.; Xiang, G.; Tang, X.; Luo, X.; Li, L.; Zhou, X. Multifunctional luminescent material Eu(III) and Tb(III) complexes with pyridine-3,5-dicarboxylic acid linker: Cystal structures, tunable emission, energy transfer, and temperature sensing. Inorg. Chem. 2019, 58, 3780–3788. [Google Scholar] [CrossRef]
- Hasegawa, M.; Ohtsu, H.; Kodama, D.; Kasai, T.; Sakurai, S.; Ishii, A.; Suzuki, K. Luminescence behaviour in acetonitrile and in the solid state of a series of lanthanide complexes with a single helical ligand. New J. Chem. 2014, 38, 1225–1234. [Google Scholar] [CrossRef]
- Seidel, C.; Lorbeer, C.; Cybińska, J.; Mudring, A.-V.; Ruschewitz, U. Lanthanide coordination polymers with tetrafluoroterephthalate as a bridging ligand: Thermal and optical properties. Inorg. Chem. 2012, 51, 4679–4688. [Google Scholar] [CrossRef]
- Wang, J.-J.; Liu, C.-S.; Hu, T.-L.; Chang, Z.; Li, C.-Y.; Yan, L.-F.; Chen, P.-Q.; Bu, X.-H.; Wu, Q.; Zhao, L.-J.; et al. Zinc(II) coordination architectures with two bulky anthracene-based carboxylic ligands: Crystal structures and luminescent properties. CrystEngComm 2008, 10, 681–692. [Google Scholar] [CrossRef]
- Liu, C.S.; Shi, X.S.; Li, J.R.; Wang, J.J.; Bu, X.H. Cd(II) coordination architectures with mixed ligands of 3-(2-pyridyl)pyrazole and pendant carboxylate ligands bearing different aromatic skeletons: Syntheses, crystal structures, and emission properties. Cryst. Growth Des. 2006, 6, 656–663. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic energy levels in the trivalent lanthanide aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968, 49, 4424–4442. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J. Chem. Phys. 1968, 49, 4450–4455. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+. J. Chem. Phys. 1968, 49, 4447–4449. [Google Scholar] [CrossRef]
- Huskowska, E.; Turowska-Tyrk, I.; Legendziewicz, J.; Riehl, J.P. The structure and spectroscopy of lanthanide(III) complexes with 2, 2′-bipyridine-1,1′-dioxide in solution and in the solid state: Effects of ionic size and solvent on photophysics, ligand structure and coordination. New J. Chem. 2002, 26, 1461–1467. [Google Scholar] [CrossRef]
- Chawla, S.; Roy, T.; Majumder, K.; Yadav, A. Red enhanced YAG: Ce, Pr nanophosphor for white LEDs. J. Exp. Nanosci. 2014, 9, 776–784. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ding, J.; Zhao, Z.; Wang, Y. A cerium doped scandate broad orange-red emission phosphor and its energy transfer-dependent concentration and thermal quenching character. Inorg. Chem. 2018, 57, 14542–14553. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kim, S.W.; Ueda, T.; Ishigaki, T.; Uematsu, K.; Takaba, H.; Toda, K.; Sato, M. Unusual, broad red emission of novel Ce3+-activated Sr3Sc4O9 phosphors under visible-light excitation. J. Mater. Chem. C 2017, 5, 9472–9478. [Google Scholar] [CrossRef]
- Aquino, L.E.D.N.; Barbosa, G.A.; Ramos, J.D.L.; Giese, S.O.K.; Santana, F.S.; Hughes, D.L.; Nunes, G.G.; Fu, L.; Fang, M.; Poneti, G.; et al. Seven-coordinate Tb3+ complexes with 90% quantum Yields: High-performance examples of combined singlet- and triplet-to-Tb3+ energy-transfer pathways. Inorg. Chem. 2021, 60, 892–907. [Google Scholar] [CrossRef] [PubMed]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283–4374. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Narayanaswamy, R. Studies on quenching of fluorescence of reagents in aqueous solution leading to an optical chloride-ion sensor. Sens. Actuators B Chem. 1997, 39, 330–333. [Google Scholar] [CrossRef]
- Rycerz, L.; Gaune-Escard, M. Thermodynamics of EuCl3: Experimental enthalpy of fusion and heat capacity and estimation of thermodynamic functions up to 1300 K. Z. Naturforschung A 2002, 57, 215–220. [Google Scholar] [CrossRef]
- Rycerz, L.; Gaune-Escard, M. Enthalpies of phase transitions and heat capacity of TbCl3 and compounds formed in TbCl3–MCl systems (M= K, Rb, Cs). J. Therm. Anal. Calorim. 2002, 68, 973–981. [Google Scholar] [CrossRef]
- Amoroso, A.J.; Thompson, A.M.C.; Jeffery, J.C.; Jones, P.L.; McCleverty, J.A.; Ward, M.D. Synthesis of the new tripodal ligand tris-[3-(2′-pyridyl)pyrazol-1- yl]hydroborate, and the crystal structure of its europium(III) complex. J. Chem. Soc. Chem. Commun. 1994, 2751–2752. [Google Scholar] [CrossRef]
- Salinas Uber, J.; Vogels, Y.; van den Helder, D.; Mutikainen, I.; Turpeinen, U.; Fu, W.T.; Roubeau, O.; Gamez, P.; Reedijk, J. Pyrazole-based ligands for the [copper–TEMPO]-mediated oxidation of benzyl alcohol to benzaldehyde and structures of the Cu coordination compounds. Eur. J. Inorg. Chem. 2007, 2007, 4197–4206. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Pennington, W.T. DIAMOND—Visual crystal structure information system. J. Appl. Crystallogr. 1999, 32, 1028–1029. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++: An. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Wrighton, M.S.; Ginley, D.S.; Morse, D.L. Technique for the determination of absolute emission quantum yields of powdered samples. J. Phys. Chem. 1974, 78, 2229–2233. [Google Scholar] [CrossRef]
Intra–4f Absorption Transitions | λmax (nm) | ||
---|---|---|---|
Nd3+ (2) | 4I9/2→ | 4D3/2, 2P1/2, (2D, 2P)3/2, 4G7/2/2K13/2, 4G5/2, 2H11/2, 4F9/2, 4F7/2, 4F5/2, 4F3/2 | 359, 431, 473, 527, 583, 633, 686, 745, 807, 878 nm |
Sm3+ (3) | 6H5/2→ | 4F7/2/6P3/2/4K11/2, (6P,4P)5/2, 4M19/2, 4I13/2, 4I11/2, 4G7/2, 4F3/2, 4G5/2, 6F11/2, 6F9/2, 6F7/2 | 405, 417, 425, 462, 479, 501, 529, 562, 948, 1090, 1237 nm |
α–Eu3+ (5) | 7F0→ | 5L6, 5D2, 5D1, 5D0 | 394, 465, 534, 579 nm |
β–Sm3+ (8) | 6H5/2→ | 4H9/2/4D7/2, 5D5/2, 6P7/2, 4F7/2/6P3/2/4K11/2, (6P,4P)5/2, 4M19/2, 4I13/2, 4I11/2, 4G7/2, 4F3/2, 4G5/2, 6F11/2, 6F9/2, 6F7/2 | 346, 363, 378, 405, 418, 424, 462, 478, 501, 529, 562, 947, 1083, 1240 nm |
β–Eu3+ (9) | 7F0→ | 5L6, 5D3, 5D2, 5D1, 5D0 | 395, 415, 465, 534, 579 nm |
Dy3+ (13) | 6H15/2→ | 5P5/2, 4M21/2/4K17/2, 4G11/2, 4I15/2, 4F9/2, 6F3/2, 6F5/2, 6F7/2, 6F9/2, 6F11/2 | 366, 387, 427, 450, 474, 754, 805, 903, 1100,1289 nm |
Ho3+ (14) | 7I8→ | (5G,3H)5/3H6, (5G,3G)5 5G6, 5F2, 5F3, 5F4, 5F5, 5I5, 5I6 | 362, 420, 451, 475, 488, 540, 645, 891, 1154 nm |
Er3+ (15) | 4I15/2→ | 4G11/2, 5F5/2, 4F7/2, 2H11/2, 4S8/2, 4F9/2, 4I11/2 | 379, 452, 489, 522, 545, 654, 978 nm |
ID | τ(RT) 1 | λex/λem [nm] 2 | τ(77 K) 3 | λex/λem [nm] 4 | Φ [%] 5 | λex/λem [nm] 6 |
---|---|---|---|---|---|---|
La3+ (1) | 1.89(3) ns | 287/364 | 1.41(1) ns | 287/339 | n/a | n/a |
Sm3+ (3) | 4.02(9) μs | 321/598 | 1.23(3) ns | 287/605 | n/a | n/a |
α–Sm3+ (4) | 1.17(2) ns | 287/599 | 1.09(2) ns | 287/599 | n/a | n/a |
α–Eu3+ (5) | 1.15(1) ms | 305/612 | 1.435(3) ms | 311/612 | 7.6(2) | 310/570–720 |
α–Gd3+ (6) | 0.117(2) ms | 289/545 | 1.034(4) ms | 310/458 | n/a | n/a |
β–Sm3+ (8) | 2.7(1) μs | 316/599 | 20.7(5) μs | 316/599 | n/a | n/a |
β–Eu3+ (9) | 1.19(2) ms | 311/612 | 1.556(4) ms | 308/612 | 12.8(6) | 310/575–715 |
Ce3+ (11) | 2.83(3) ns | 368/595 | 5.6(1) ns | 368/604 | n/a | n/a |
Tb3+ (12) | 1.230(1) ms | 321/546 | 1.287(1) ms | 321/546 | 91.8(1.6) | 318/473–692 |
Dy3+ (13) | 17.14(3) μs | 321/573 | 13.19(1) μs | 321/574 | 3.3(1) | 320/459–763 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, H.; Sedykh, A.E.; Becker, J.; Taydakov, I.V.; Müller-Buschbaum, K. 3–(2–Pyridyl)pyrazole Based Luminescent 1D-Coordination Polymers and Polymorphic Complexes of Various Lanthanide Chlorides Including Orange-Emitting Cerium(III). Inorganics 2022, 10, 254. https://doi.org/10.3390/inorganics10120254
Youssef H, Sedykh AE, Becker J, Taydakov IV, Müller-Buschbaum K. 3–(2–Pyridyl)pyrazole Based Luminescent 1D-Coordination Polymers and Polymorphic Complexes of Various Lanthanide Chlorides Including Orange-Emitting Cerium(III). Inorganics. 2022; 10(12):254. https://doi.org/10.3390/inorganics10120254
Chicago/Turabian StyleYoussef, Heba, Alexander E. Sedykh, Jonathan Becker, Ilya V. Taydakov, and Klaus Müller-Buschbaum. 2022. "3–(2–Pyridyl)pyrazole Based Luminescent 1D-Coordination Polymers and Polymorphic Complexes of Various Lanthanide Chlorides Including Orange-Emitting Cerium(III)" Inorganics 10, no. 12: 254. https://doi.org/10.3390/inorganics10120254
APA StyleYoussef, H., Sedykh, A. E., Becker, J., Taydakov, I. V., & Müller-Buschbaum, K. (2022). 3–(2–Pyridyl)pyrazole Based Luminescent 1D-Coordination Polymers and Polymorphic Complexes of Various Lanthanide Chlorides Including Orange-Emitting Cerium(III). Inorganics, 10(12), 254. https://doi.org/10.3390/inorganics10120254