Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power
Abstract
1. Introduction
2. Model
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKelvy, M.L.; Britt, T.R.; Davis, B.L.; Gillie, J.K.; Lentz, L.A.; Leugers, A.; Nyquist, R.A.; Putzig, C.L. Infrared spectroscopy. Anal. Chem. 1996, 68, 93–160. [Google Scholar] [CrossRef]
- Fuji, T.; Shirai, H.; Nomura, Y. Ultrabroadband mid-infrared spectroscopy with four-wave difference frequency generation. J. Opt. 2015, 17, 094004. [Google Scholar] [CrossRef]
- Woodbury, D.; Feder, L.; Shumakova, V.; Gollner, C.; Schwartz, R.; Miao, B.; Salehi, F.; Korolov, A.; Pugžlys, A.; Baltuška, A.; et al. Laser wakefield acceleration with mid-IR laser pulses. Opt. Lett. 2018, 43, 1131–1134. [Google Scholar] [CrossRef]
- Balcou, P.; Cornaggia, C.; Gomes, A.; Lompre, L.; L’Huillier, A. Optimizing high-order harmonic generation in strong fields. J. Phys. B 1992, 25, 4467. [Google Scholar] [CrossRef]
- Kohler, M.C.; Pfeifer, T.; Hatsagortsyan, K.Z.; Keitel, C.H. Frontiers of atomic high-harmonic generation. In Advances in Atomic, Molecular, and Optical Physics; Elsevier: Amsterdam, The Netherlands, 2012; Volume 61, pp. 159–208. [Google Scholar]
- Kartashov, D.; Ališauskas, S.; Andriukaitis, G.; Pugžlys, A.; Shneider, M.; Zheltikov, A.; Chin, S.L.; Baltuška, A. Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 2012, 86, 033831. [Google Scholar] [CrossRef]
- Panov, N.A.; Shipilo, D.E.; Saletsky, A.M.; Liu, W.; Polynkin, P.G.; Kosareva, O.G. Nonlinear transparency window for ultraintense femtosecond laser pulses in the atmosphere. Phys. Rev. A 2019, 100, 023832. [Google Scholar] [CrossRef]
- Clerici, M.; Peccianti, M.; Schmidt, B.E.; Caspani, L.; Shalaby, M.; Giguere, M.; Lotti, A.; Couairon, A.; Légaré, F.; Ozaki, T.; et al. Wavelength scaling of terahertz generation by gas ionization. Phys. Rev. Lett. 2013, 110, 253901. [Google Scholar] [CrossRef]
- Cook, D.; Hochstrasser, R. Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 2000, 25, 1210–1212. [Google Scholar] [CrossRef]
- Fedorov, V.Y.; Tzortzakis, S. Extreme THz fields from two-color filamentation of midinfrared laser pulses. Phys. Rev. A 2018, 97, 063842. [Google Scholar] [CrossRef]
- Nguyen, A.; de Alaiza Martínez, P.G.; Thiele, I.; Skupin, S.; Bergé, L. Broadband terahertz radiation from two-color mid-and far-infrared laser filaments in air. Phys. Rev. A 2018, 97, 063839. [Google Scholar] [CrossRef]
- Jang, D.; Schwartz, R.M.; Woodbury, D.; Griff-McMahon, J.; Younis, A.H.; Milchberg, H.M.; Kim, K.Y. Efficient terahertz and Brunel harmonic generation from air plasma via mid-infrared coherent control. Optica 2019, 6, 1338. [Google Scholar] [CrossRef]
- Mitrofanov, A.; Sidorov-Biryukov, D.; Nazarov, M.; Voronin, A.; Rozhko, M.; Shutov, A.; Ryabchuk, S.; Serebryannikov, E.; Fedotov, A.; Zheltikov, A. Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses. Optica 2020, 7, 15. [Google Scholar] [CrossRef]
- Koulouklidis, A.D.; Gollner, C.; Shumakova, V.; Fedorov, V.Y.; Pugžlys, A.; Baltuška, A.; Tzortzakis, S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Ropagnol, X.; Ovchinnikov, A.; Chefonov, O.; Ushakov, A.; Garcia-Rosas, C.; Isgandarov, E.; Agranat, M.; Ozaki, T.; Savel’ev, A. Observation of crossover from intraband to interband nonlinear terahertz optics. Opt. Lett. 2018, 43, 5463–5466. [Google Scholar] [CrossRef] [PubMed]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Liu, J.; Dai, J.; Chin, S.L.; Zhang, X.C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photon. 2010, 4, 627–631. [Google Scholar] [CrossRef]
- Nguyen, A.; Kaltenecker, K.; Delagnes, J.C.; Zhou, B.; Cormier, E.; Fedorov, N.; Bouillaud, R.; Descamps, D.; Thiele, I.; Skupin, S.; et al. Wavelength scaling of terahertz pulse energies delivered by two-color air plasmas. Opt. Lett. 2019, 44, 1488–1491. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Huang, S.; Zhang, S.; Zhang, C. Terahertz wave generation from noble gas plasmas induced by a wavelength-tunable femtosecond laser. IEEE Trans. THz Sci. Tech. 2018, 8, 299–304. [Google Scholar] [CrossRef]
- Fedorov, V.Y.; Tzortzakis, S. Optimal wavelength for two-color filamentation-induced terahertz sources. Opt. Express 2018, 26, 31150. [Google Scholar] [CrossRef]
- Kim, K.Y.; Glownia, J.H.; Taylor, A.J.; Rodriguez, G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 2007, 15, 4577–4584. [Google Scholar] [CrossRef]
- Dai, J.; Karpowicz, N.; Zhang, X.C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 2009, 103, 023001. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, W.; Shi, Y.; Lu, P.; Pan, H.; Zeng, H. Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses. Appl. Phys. Lett. 2012, 101, 161104. [Google Scholar] [CrossRef]
- Solyankin, P.M.; Nikolaeva, I.A.; Angeluts, A.A.; Shipilo, D.E.; Minaev, N.V.; Panov, N.A.; Balakin, A.V.; Zhu, Y.; Kosareva, O.G.; Shkurinov, A.P. THz generation from laser-induced breakdown in pressurized molecular gases: On the way to terahertz remote sensing of the atmospheres of Mars and Venus. New J. Phys. 2020, 22, 013039. [Google Scholar] [CrossRef]
- Nikolaeva, I.; Shipilo, D.; Panov, N.; Kosareva, O. Dual-wavelength filamentation with a fraction of fundamental laser frequency as a wideband THz source. Laser Phys. Lett. 2021, 18, 025401. [Google Scholar] [CrossRef]
- Kolesik, M.; Moloney, J.V. Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E 2004, 70, 036604. [Google Scholar] [CrossRef] [PubMed]
- Borodin, A.V.; Panov, N.A.; Kosareva, O.G.; Andreeva, V.A.; Esaulkov, M.N.; Makarov, V.A.; Shkurinov, A.P.; Chin, S.L.; Zhang, X.C. Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases. Opt. Lett. 2013, 38, 1906. [Google Scholar] [CrossRef]
- Brown, J.M.; Couairon, A.; Gaarde, M.B. Ab initio calculations of the linear and nonlinear susceptibilities of N2, O2, and air in midinfrared laser pulses. Phys. Rev. A 2018, 97, 063421. [Google Scholar] [CrossRef]
- Liu, W.; Chin, S.L. Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air. Opt. Express 2005, 13, 5750. [Google Scholar] [CrossRef]
- Zahedpour, S.; Wahlstrand, J.; Milchberg, H. Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths. Opt. Lett. 2015, 40, 5794–5797. [Google Scholar] [CrossRef]
- Rae, S.; Burnett, K. Detailed simulations of plasma-induced spectral blueshifting. Phys. Rev. A 1992, 46, 1084. [Google Scholar] [CrossRef]
- Shipilo, D.; Nikolaeva, I.; Fedorov, V.Y.; Tzortzakis, S.; Couairon, A.; Panov, N.; Kosareva, O. Tight focusing of electromagnetic fields by large-aperture mirrors. Phys. Rev. E 2019, 100, 033316. [Google Scholar] [CrossRef] [PubMed]
- Mokrousova, D.; Savinov, S.; Seleznev, L.; Rizaev, G.; Koribut, A.; Mityagin, Y.A.; Ionin, A.; Nikolaeva, I.; Shipilo, D.; Panov, N.; et al. Tracing air-breakdown plasma characteristics from single-color filament terahertz spectra. J. Infrared Milli Thz Waves 2020, 41, 1105–1113. [Google Scholar] [CrossRef]
- Zhang, Z.; Panov, N.; Andreeva, V.; Zhang, Z.; Slepkov, A.; Shipilo, D.; Thomson, M.; Wang, T.J.; Babushkin, I.; Demircan, A.; et al. Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air. Appl. Phys. Lett. 2018, 113, 241103. [Google Scholar] [CrossRef]
- Andreeva, V.; Kosareva, O.; Panov, N.; Shipilo, D.; Solyankin, P.; Esaulkov, M.; de Alaiza Martínez, P.G.; Shkurinov, A.; Makarov, V.; Bergé, L.; et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett. 2016, 116, 063902. [Google Scholar] [CrossRef] [PubMed]
- Mokrousova, D.; Savinov, S.; Rizaev, G.; Shipilo, D.; Panov, N.; Seleznev, L.; Mityagin, Y.A.; Ionin, A.; Shkurinov, A.; Kosareva, O. Terahertz emission from a single-color ultraviolet filament. Laser Phys. Lett. 2019, 16, 105403. [Google Scholar] [CrossRef]
- Fedotov, A.B.; Koroteev, N.I.; Loy, M.; Xiao, X.; Zheltikov, A.M. Saturation of third-harmonic generation in a plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses. Opt. Commun. 1997, 133, 587–595. [Google Scholar] [CrossRef]
- Mitrofanov, A.V.; Voronin, A.A.; Sidorov-Biryukov, D.A.; Pugžlys, A.; Stepanov, E.A.; Andriukaitis, G.; Ališauskas, S.; Flöry, T.; Fedotov, A.B.; Baltuška, A.; et al. Mid-infrared laser filaments in the atmosphere. Sci. Rep. 2015, 5, 8368. [Google Scholar] [CrossRef]
- Kartashov, D.; Ališauskas, S.; Pugžlys, A.; Voronin, A.A.; Zheltikov, A.M.; Baltuška, A. Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: Beyond the fifth-order nonlinearity. Opt. Lett. 2012, 37, 2268. [Google Scholar] [CrossRef]
- Theberge, F.; Liu, W.; Luo, Q.; Chin, S.L. Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses. Appl. Phys. B 2005, 80, 221–225. [Google Scholar] [CrossRef]
- Panov, N.A.; Shipilo, D.E.; Andreeva, V.A.; Kosareva, O.G.; Saletsky, A.M.; Xu, H.; Polynkin, P. Supercontinuum of a 3.9-μ m filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption. Phys. Rev. A 2016, 94, 041801. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Kolesik, M.; Tochitsky, S.; Koch, S.W.; Moloney, J.V. Two-stage filamentation of 10 μm pulses as a broadband infrared backlighter in the atmosphere. Opt. Lett. 2019, 44, 3122–3125. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaeva, I.A.; Shipilo, D.E.; Panov, N.A.; Liu, W.; Savel’ev, A.B.; Kosareva, O.G. Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power. Photonics 2022, 9, 974. https://doi.org/10.3390/photonics9120974
Nikolaeva IA, Shipilo DE, Panov NA, Liu W, Savel’ev AB, Kosareva OG. Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power. Photonics. 2022; 9(12):974. https://doi.org/10.3390/photonics9120974
Chicago/Turabian StyleNikolaeva, Irina A., Daniil E. Shipilo, Nikolay A. Panov, Weiwei Liu, Andrei B. Savel’ev, and Olga G. Kosareva. 2022. "Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power" Photonics 9, no. 12: 974. https://doi.org/10.3390/photonics9120974
APA StyleNikolaeva, I. A., Shipilo, D. E., Panov, N. A., Liu, W., Savel’ev, A. B., & Kosareva, O. G. (2022). Scaling Law of THz Yield from Two-Color Femtosecond Filament for Fixed Pump Power. Photonics, 9(12), 974. https://doi.org/10.3390/photonics9120974