Enhanced Performance of Nanotextured Silicon Solar Cells with Excellent Light-Trapping Properties
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Light-Trapping Property of Nano-Texture
3.2. Surface Passivation of Nanotexture
3.3. Electrode Contact Enhancement Via Light-Induced Plating (LIP)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Group | VOC (mV) | JSC (mA/cm2) | FF (%) | Eff (%) | RS (Ω·cm2) |
---|---|---|---|---|---|
Al2O3-coated planar (4 cells) | 614 ± 7 | 29.7 ± 1.1 | 62.6 ± 5.6 | 11.4 ± 0.3 | 0.56 ± 0.27 |
SiNX-coated planar (4 cells) | 607 ± 3 | 29.0 ± 0.4 | 63.3 ± 3.4 | 11.1 ± 0.5 | 0.59 ± 0.16 |
References
- Es, F.; Baytemir, G.; Kulakci, M.; Turan, R. Metal-assisted nano-textured solar cells with SiO2/Si3N4 passivation. Sol. Energy Mater. Sol. Cells 2017, 160, 269–274. [Google Scholar] [CrossRef]
- Nirmal, A.; Kyaw, A.K.K.; Wang, J.; Dev, K.; Sun, X.; Demir, H.V. Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals. IEEE J. Photovolt. 2017, 7, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Xu, Z.; Xu, H.; Zhao, W.; Peng, J. Direct Tailoring the Si Substrate for Antireflection via Random Nanohole Nanoimprint. J. Nanosci. Nanotechnol. 2015, 15, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Jia, R.; Dai, X.; Tao, K.; Sun, H.; Jin, Z.; Liu, X. The Influence of Black Silicon Morphology Modification by Acid Etching to the Properties of Diamond Wire Sawn Multicrystalline Silicon Solar Cells. IEEE J. Photovolt. 2018, 8, 937–942. [Google Scholar] [CrossRef]
- Lei, W.; Zhang, H.; Qin, F.; Bai, X.; Ji, Z.; Dan, H. Performance enhancement of pc-Si solar cells through combination of anti-reflection and light-trapping: Functions of AAO nano-grating. Opt. Commun. 2017, 385, 205–212. [Google Scholar]
- Jiang, Y.; Shen, H.; Pu, T.; Zheng, C.; Tang, Q.; Gao, K.; Wu, J.; Rui, C.; Li, Y.; Liu, Y. High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure. Sol. Energy 2017, 142, 91–96. [Google Scholar] [CrossRef]
- Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B.A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91, 233117. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, B. Porous Silicon. Semicond. Sci. Technol. 1995, 10, 1187–1207. [Google Scholar] [CrossRef]
- Schmidt, V.; Wittemann, J.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702. [Google Scholar] [CrossRef]
- Chen, C.; Jia, R.; Li, H.; Meng, Y.; Liu, X.; Ye, T.; Kasai, S.; Tamotsu, H.; Wu, N.; Wang, S.; et al. Electrode-contact enhancement in silicon nanowire-array-textured solar cells. Appl. Phys. Lett. 2011, 98, 143108. [Google Scholar] [CrossRef]
- Dou, B.; Jia, R.; Sun, Y.; Li, H.; Chen, C.; Jin, Z.; Liu, X.; Xu, X. Enhanced electrode-contact property of silicon nano-textured solar cells via selective etching. Sol. Energy 2014, 99, 95–99. [Google Scholar] [CrossRef]
- Dou, B.; Jia, R.; Li, H.; Chen, C.; Meng, Y.; Ding, W.; Liu, X.; Ye, T.; Wang, Y. Maskless fabrication of selectively sized silicon nanostructures for solar cell application. J. Vac. Sci. Technol. B 2012, 30, 041401. [Google Scholar] [CrossRef]
- Menna, P.; Francia, G.D.; Ferrara, V.L. Porous silicon in solar cells: A review and a description of its application as an AR coating. Sol. Energy Mater. Sol. Cells 1995, 37, 13–24. [Google Scholar] [CrossRef]
- Richter, A.; Glunz, S.W.; Werner, F.; Schmidt, J.; Cuevas, A. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 2012, 86, 165202. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Su, R.; Zhang, W.; Gong, Q.; Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 2020, 5, 44–60. [Google Scholar] [CrossRef]
- Tyagi, M.S.; van Overstraeten, R. Minority carrier recombination in heavily-doped silicon. Solid-State Electron. 1983, 26, 577–597. [Google Scholar] [CrossRef]
- Bonilla, R.S.; Hoex, B.; Hamer, P.; Wilshaw, P.R. Dielectric surface passivation for silicon solar cells: A review. Phys. Status Solidi A 2017, 214, 1700293. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Werner, F.; Veith, B.; Zielke, D.; Steingrube, S.; Altermatt, P.P.; Gatz, S.; Dullweber, T.; Brendel, R. Advances in the Surface Passivation of Silicon Solar Cells. Energy Procedia 2012, 15, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Hallam, B.; Hameiri, Z.; Chan, C.; Yao, Y.; Chong, C.; Wenham, S. Over 700 mV Implied Voc on p-Type CZ Silicon Solar Cells with Double-Sided Laser Doping. Energy Procedia 2013, 33, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Jia, R.; Dou, B.; Li, H.; Jin, Z.; Liu, X.; Li, F.; Zhang, W.; Wu, C. Enhanced properties of silicon nano-textured solar cells enabled by controlled ZnO nanorods coating. Sol. Energy 2015, 115, 770–776. [Google Scholar] [CrossRef]
- Liang, X.; Shu, L.; Lin, H.; Fang, M.; Zhang, H.; Dong, G.; Yip, S.; Xiu, F.; Ho, J.C. Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures. Sci. Rep. 2016, 6, 34139. [Google Scholar] [CrossRef]
- Disney, C.E.R.; Pillai, S.; Green, M.A. The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors. Sci. Rep. 2017, 7, 12826. [Google Scholar] [CrossRef] [PubMed]
- Dou, B.; Jia, R.; Li, H.; Chen, C.; Ding, W.; Meng, Y.; Xing, Z.; Liu, X.; Ye, T. High performance radial p-n junction solar cell based on silicon nanopillar array with enhanced decoupling mechanism. Appl. Phys. Lett. 2012, 101, 183901. [Google Scholar] [CrossRef]
- Lennon, A.; Yao, Y.; Wenham, S. Evolution of metal plating for silicon solar cell metallisation. Prog. Photovolt. Res. Appl. 2013, 21, 1454–1468. [Google Scholar] [CrossRef]
Group | Ra |
---|---|
NS-A (SiNX-coated) | 2.75% |
NS-B (Al2O3-coated) | 5.28% |
Planar (SiNX-coated) | 11.71% |
Nanotextured wafer (no coating) | 2.40% |
Blank wafer (no coating) | 34.21% |
Group | VOC (mV) | JSC (mA/cm2) | FF (%) | Eff (%) | RS (Ω·cm2) |
---|---|---|---|---|---|
NS-A (6 cells) | 583 ± 3 | 25.5 ± 1.2 | 57.8 ± 1.3 | 8.6 ± 0.4 | 0.89 ± 0.12 |
NS-B (6 cells) | 610 ± 2 | 30.8 ± 1.0 | 52.9 ± 4.5 | 9.9 ± 1.6 | 1.13 ± 0.35 |
Planar (6 cells) | 621 ± 3 | 28.5 ± 0.5 | 64.5 ± 2.6 | 11.7 ± 0.3 | 0.41 ± 0.15 |
Group | VOC (mV) | JSC (mA/cm2) | FF (%) | Eff (%) | RS (Ω·cm2) |
---|---|---|---|---|---|
NS-A (6 cells) | 587 ± 3 | 26.1 ± 1.1 | 66.4 ± 3.7 | 10.2 ± 0.5 | 0.43 ± 0.25 |
NS-B (6 cells) | 613 ± 2 | 31.2 ± 0.5 | 69.8 ± 2.7 | 13.3 ± 1.3 | 0.33 ± 0.02 |
Planar (6 cells) | 618 ± 2 | 28.7 ± 0.2 | 65.7 ± 2.3 | 12.0 ± 0.7 | 0.31 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, B.; Jia, R.; Xing, Z.; Yao, X.; Xiao, D.; Jin, Z.; Liu, X. Enhanced Performance of Nanotextured Silicon Solar Cells with Excellent Light-Trapping Properties. Photonics 2021, 8, 272. https://doi.org/10.3390/photonics8070272
Dou B, Jia R, Xing Z, Yao X, Xiao D, Jin Z, Liu X. Enhanced Performance of Nanotextured Silicon Solar Cells with Excellent Light-Trapping Properties. Photonics. 2021; 8(7):272. https://doi.org/10.3390/photonics8070272
Chicago/Turabian StyleDou, Bingfei, Rui Jia, Zhao Xing, Xiaojiang Yao, Dongping Xiao, Zhi Jin, and Xinyu Liu. 2021. "Enhanced Performance of Nanotextured Silicon Solar Cells with Excellent Light-Trapping Properties" Photonics 8, no. 7: 272. https://doi.org/10.3390/photonics8070272
APA StyleDou, B., Jia, R., Xing, Z., Yao, X., Xiao, D., Jin, Z., & Liu, X. (2021). Enhanced Performance of Nanotextured Silicon Solar Cells with Excellent Light-Trapping Properties. Photonics, 8(7), 272. https://doi.org/10.3390/photonics8070272