An Improved Large-Field Microscopic Speckle Interferometry System for Dynamic Displacement Measurement of MEMS
Abstract
:1. Introduction
2. Principle
2.1. Traditional Linnik Microscopic Interferometry System
2.2. Large-Field Microscopic Speckle Interferometry System
- First, the CCD is directly used for imaging. By adjusting the CCD lens, it can image the pattern numbered 60 on the resolution board, as shown in Figure 3. The field of view is a circle with a diameter of 13 mm. It can be seen that a lot of detailed information is lost in the collected image and the stripes cannot be distinguished. It is obvious that only using ordinary CCD can not distinguish the clear imaging of a small object, as shown in Figure 3d;
- Then, a microscope objective is added to simulate the field of view of Linnik structure. The pattern numbered 60 of the resolution board is imaged by CCD. As shown in Figure 4, the imaging region corresponds to the yellow contour region of Figure 3 We can find that by adding a microscope objective, 60 obvious stripes and clear details can be observed. At this time, the field of view is modulated by the imaging field of the microscope objective, which is approximately a circle with a diameter of 2.4 mm;
- Finally, the doublet lens group is introduced, and the field of view is shown in Figure 5. At this time, the field of view is modulated by the microscope objective, doublet lens group and the spatial resolution of the CCD together. It is a rectangular with an area of 6 mm × 8 mm, and its imaging area corresponds to the blue contour region in Figure 3. When we enlarge the selected area in the upper left corner, 60 stripes can also be clearly observed. Therefore, by introducing doublet lens groups, we not only expand the field of view, but also ensure the detailed information of the object.
3. Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Abdulhalim, I. Theory for double beam interference microscopes with coherence effects and verification using the Linnik microscope. J. Mod. Opt. 2001, 48, 279–302. [Google Scholar] [CrossRef]
- Lin, S.T.; Hsu, W.F.; Wang, M.S. Phase-shifting interference microscope with extendable field of measurement. J. Opt. 2018, 20, 1–7. [Google Scholar] [CrossRef]
- Niehues, J.; Lehmann, P.; Xie, W. Low coherent Linnik interferometer optimized for use in nano-measuring machines. Meas. Sci. Technol. 2012, 23, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, R.; Lira, L.; Perez-Lopez, C.; Rayas, J.A.; Rodriguez-Vera, R. Interferometric measurement of a diffusion coefficient: Comparison of two methods and uncertainty analysis. J. Phys. D-Appl. Phys. 2007, 40, 2769–2776. [Google Scholar] [CrossRef]
- Berguiga, L.; Zhang, S.J.; Argoul, F.; Elezgaray, J. High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions. Opt. Lett. 2007, 32, 509–511. [Google Scholar] [CrossRef]
- Butters, J.N.; Leendertz, J.A. Speckle pattern and holographic techniques in engineering metrology. Opt. Laser Technol. 1971, 3, 26–30. [Google Scholar] [CrossRef]
- Jones, R.; Wykes, C. General Parameters for the Design and Optimization of Electronic Speckle Pattern Interferometers. Opt. Acta 1981, 28, 949–972. [Google Scholar]
- Joenathan, C. Vibration fringes by phase stepping on an electronic speckle pattern interferometer—An analysis. Appl. Opt. 1991, 30, 4658–4665. [Google Scholar] [CrossRef]
- Moore, A.J.; Tyrer, J.R.; Santoyo, F.M. Phase extraction from electronic speckle pattern interferometry addition fringes. Appl. Opt. 1994, 33, 7312–7320. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Zurita, G.; Garcia-Arellano, A.; Toto-Arellano, N.I.; Flores-Munoz, V.H.; Pastrana-Sanchez, R.; Robledo-Sanchez, C.; Martinez-Bravo, O.; Vasquez-Pasmino, N.; Costa-Vera, C. One-shot phase stepping with a pulsed laser and modulation of polarization: Application to speckle interferometry. Opt. Express 2015, 23, 23414–23427. [Google Scholar] [CrossRef]
- Bavigadda, V.; Jallapuram, R.; Mihaylova, E.; Toal, V. Electronic speckle-pattern interferometer using holographic optical elements for vibration measurements. Opt. Lett. 2010, 35, 3273–3275. [Google Scholar] [CrossRef] [Green Version]
- Malacara, D.; Servin, M.; Malacara, Z. Periodic Signal Phase Detection and Algorithm Analysis. In Interferogram Analysis for Optical Testing, 2nd ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2005; pp. 1–99. [Google Scholar]
- Furlong, C.; Pryputniewcz, R.J. Optoelectronic characterization of shape and deformation of MEMS accelerometers used in transportation applications. Opt. Eng. 2003, 42, 1223–1231. [Google Scholar] [CrossRef]
- Kumar, U.P.; Bhaduri, B.; Kothiyal, M.P.; Mohan, N.K. Two-wavelength micro-interferometry for 3-D surface profiling. Opt. Lasers Eng. 2009, 47, 223–229. [Google Scholar] [CrossRef]
- Kumar, U.P.; Mohan, N.K.; Kothiyal, M.P.; Asundi, A.K. Deformation and shape measurement using multiple wavelength microscopic TV holography. Opt. Eng. 2009, 48, 0236011–0236019. [Google Scholar] [CrossRef]
- De Groot, P.J.; Biegen, J.F. Interference microscope objectives for wide-field areal surface topography measurements. Opt. Eng. 2016, 55, 0741101–0741106. [Google Scholar] [CrossRef] [Green Version]
- Denboef, A.J. Scanning force microscopy using a simple low-noise interferometer. Appl. Phys. Lett. 1989, 55, 439–441. [Google Scholar] [CrossRef]
- Dubois, A.; Vabre, L.; Boccara, A.C. Sinusoidally phase-modulated interference microscope for high-speed high-resolution topographic imagery. Opt. Lett. 2001, 26, 1873–1875. [Google Scholar] [CrossRef]
- Wiersma, J.T.; Wyant, J.C. Vibration insensitive extended range interference microscopy. Appl. Opt. 2013, 52, 5957–5961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.H.; Chang, C.-J.; Kao, C.F. Full-field optical coherence tomography using immersion Mirau interference microscope. Appl. Opt. 2013, 52, 4400–4403. [Google Scholar] [CrossRef] [PubMed]
- Schmit, J.; Hariharan, P. Improved polarization Mirau interference microscope. Opt. Eng. 2007, 46, 0770071–0770073. [Google Scholar]
- Lyulko, O.V.; Randers-Pehrson, G.; Brenner, D.J. Simultaneous immersion Mirau interferometry. Rev. Sci. Instrum. 2013, 84, 0537011–0537016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.D.; Liang, R.G. Simultaneous polarization Mirau interferometer based on pixelated polarization camera. Opt. Lett. 2016, 41, 41–44. [Google Scholar] [CrossRef]
- Ganjkhani, Y.; Chaysooghi, M.A.; Akhlaghi, E.A.; Moradi, A.R. Super-resolved Mirau digital holography by structured illumination. Opt. Commun. 2017, 404, 110–117. [Google Scholar] [CrossRef]
- Dubois, A. Effects of phase change on reflection in phase-measuring interference microscopy. Appl. Opt. 2004, 43, 1503–1507. [Google Scholar] [CrossRef] [Green Version]
- Somekh, M.G.; Charsooghi, M.A.; Akhlaghi, E.A.; Moradi, A.R. Wide-field high-resolution surface-plasmon interference microscopy. Opt. Lett. 2009, 34, 3110–3112. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Hosseini, P.; Choi, W.; Dasari, R.R.; Peter, T.C.; Yaqoob, Z. Dynamic speckle illumination wide-field reflection phase microscopy. Opt. Lett. 2014, 39, 6062–6065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitter, M.C.; See, C.W.; Somekh, M.G. Full-field heterodyne interference microscope with spatially incoherent illumination. Opt. Lett. 2004, 29, 1200–1202. [Google Scholar] [CrossRef]
- Dubois, A.; Vabre, L.; Boccara, A.C.; Beaurepaire, E. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 2002, 41, 805–812. [Google Scholar] [CrossRef]
- Abdulhalim, I.; Dadon, R. Multiple interference and spatial frequencies’ effect on the application of frequency-domain optical coherence tomography to thin films’ metrology. Meas. Sci. Technol. 2009, 20, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.L.; Jian, Z.C.; Hsieh, H.C.; Wu, W.T.; Su, D.C. Nano-roughness measurements with a modified Linnik microscope and the uses of full-field heterodyne interferometry. Opt. Eng. 2008, 47, 1256011–1256015. [Google Scholar] [CrossRef]
- Safrani, A.; Abdulhalim, L. Real-time phase shift interference microscopy. Opt. Lett. 2014, 39, 5220–5223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Shen, W. Thermal deformation analysis of copper microbridges with speckle interferometry and finite element. Key Eng. Mater. 2007, 353, 2871–2874. [Google Scholar] [CrossRef]
- Gao, C.J.; Gao, Z.; Wang, X.; Liu, Z.H. Real-time measurement of microcantilever displacement based on Linnik microscopic speckle interferometer. Opt. Eng. 2018, 57, 1241011–1241016. [Google Scholar] [CrossRef]
- Yang, L.X.; Xie, X.; Zhu, L.Q.; Wu, S.J.; Wang, Y.H. Review of Electronic Speckle Pattern Interferometry (ESPI) for Three Dimensional Displacement Measurement. Chin. J. Mech. Eng. 2014, 27, 1–13. [Google Scholar] [CrossRef]
- Gomez-Mendez, G.A.; Rodriguez-Zurita, G.; Martinez-Garcia, A. Phase stepping through polarizing modulation in electronic speckle pattern interferometry. Appl. Opt. 2020, 59, 6005–6011. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, B.; Mohan, N.K.; Kothlyal, M.P. A dual-function ESPI system for the measurement of out-of-plane displacement and slope. Opt. Lasers Eng. 2006, 44, 637–644. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Gao, Z.; Niu, Y.; Wang, X.; Zhao, J.; Deng, L. An Improved Large-Field Microscopic Speckle Interferometry System for Dynamic Displacement Measurement of MEMS. Photonics 2021, 8, 271. https://doi.org/10.3390/photonics8070271
Gao C, Gao Z, Niu Y, Wang X, Zhao J, Deng L. An Improved Large-Field Microscopic Speckle Interferometry System for Dynamic Displacement Measurement of MEMS. Photonics. 2021; 8(7):271. https://doi.org/10.3390/photonics8070271
Chicago/Turabian StyleGao, Chenjia, Zhan Gao, Yuhao Niu, Xu Wang, Jieming Zhao, and Lin Deng. 2021. "An Improved Large-Field Microscopic Speckle Interferometry System for Dynamic Displacement Measurement of MEMS" Photonics 8, no. 7: 271. https://doi.org/10.3390/photonics8070271
APA StyleGao, C., Gao, Z., Niu, Y., Wang, X., Zhao, J., & Deng, L. (2021). An Improved Large-Field Microscopic Speckle Interferometry System for Dynamic Displacement Measurement of MEMS. Photonics, 8(7), 271. https://doi.org/10.3390/photonics8070271