Highly Efficient and Tunable Linear-to-Circular Polarization Conversion Enabled by Topological Unidirectional Guided Resonance
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ta, S.X.; Park, I.; Ziolkowski, R.W. Crossed dipole antennas: A review. IEEE Antennas Propag. Mag. 2015, 57, 107–122. [Google Scholar] [CrossRef]
- Shankar, R. Fundamentals of Physics II: Electromagnetism, Optics, and Quantum Mechanics; Yale University Press: Delete New Haven, CT, USA, 2016. [Google Scholar]
- Stanciu, C.D.; Hansteen, F.; Kimel, A.V.; Kirilyuk, A.; Tsukamoto, A.; Itoh, A.; Rasing, T. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 2007, 99, 047601. [Google Scholar] [CrossRef]
- Ma, Q.; Xu, S.Y.; Chan, C.K.; Zhang, C.L.; Chang, G.; Lin, Y.; Xie, W.; Palacios, T.; Lin, H.; Jia, S.; et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 2017, 13, 842–847. [Google Scholar] [CrossRef]
- Mou, S.; D’Arco, A.; Tomarchio, L.; Macis, S.; Petrarca, M.; Lupi, S. Achromatic terahertz quarter-wave Fresnel rhomb retarder. Appl. Phys. Lett. 2023, 122, 241102. [Google Scholar] [CrossRef]
- Cong, L.; Xu, N.; Gu, J.; Singh, R.; Han, J.; Zhang, W. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photonics Rev. 2014, 8, 626–632. [Google Scholar] [CrossRef]
- Lee, W.S.; Ako, R.T.; Low, M.X.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Dielectric-resonator metasurfaces for broadband terahertz quarter-and half-wave mirrors. Opt. Express 2018, 26, 14392–14406. [Google Scholar] [CrossRef]
- Chang, C.C.; Zhao, Z.; Li, D.; Taylor, A.J.; Fan, S.; Chen, H.T. Broadband linear-to-circular polarization conversion enabled by birefringent off-resonance reflective metasurfaces. Phys. Rev. Lett. 2019, 123, 237401. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, X.; Luo, X.; Ou, X.; Li, L.; Chen, Y.; Yang, P.; Wang, S.; Duan, H. All-dielectric metasurfaces for polarization manipulation: Principles and emerging applications. Nanophotonics 2020, 9, 3755–3780. [Google Scholar] [CrossRef]
- Deng, Y.; Cai, Z.; Ding, Y.; Bozhevolnyi, S.I.; Ding, F. Recent progress in metasurface-enabled optical waveplates. Nanophotonics 2022, 11, 2219–2244. [Google Scholar] [CrossRef] [PubMed]
- Bonod, N.; Brianceau, P.; Daurios, J.; Grosjean, S.; Roquin, N.; Gleyze, J.F.; Lamaignère, L.; Neauport, J. Linear-to-circular polarization conversion with full-silica meta-optics to reduce nonlinear effects in high-energy lasers. Nat. Commun. 2023, 14, 5383. [Google Scholar] [CrossRef]
- Strikwerda, A.C.; Fan, K.; Tao, H.; Pilon, D.V.; Zhang, X.; Averitt, R.D. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Opt. Express 2009, 17, 136–149. [Google Scholar] [CrossRef]
- Yu, N.; Aieta, F.; Genevet, P.; Kats, M.A.; Gaburro, Z.; Capasso, F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012, 12, 6328–6333. [Google Scholar] [CrossRef]
- Wang, F.; Chakrabarty, A.; Minkowski, F.; Sun, K.; Wei, Q.H. Polarization conversion with elliptical patch nanoantennas. Appl. Phys. Lett. 2012, 101, 023101. [Google Scholar] [CrossRef]
- Roberts, A.; Lin, L. Plasmonic quarter-wave plate. Opt. Lett. 2012, 37, 1820–1822. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Alù, A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett. 2013, 13, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Qi, L.; Yang, J.; Uqaili, J.A.; Lan, F.; Yang, Z. Bifunctional terahertz metasurface for transmissive broadband linear-to-circular and linear polarization conversion. IEEE Trans. Terahertz Sci. Technol. 2023, 13, 254–261. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 2014, 14, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Kruk, S.; Hopkins, B.; Kravchenko, I.I.; Miroshnichenko, A.; Neshev, D.N.; Kivshar, Y.S. Invited Article: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics 2016, 1, 030801. [Google Scholar] [CrossRef]
- Wu, P.C.; Sokhoyan, R.; Shirmanesh, G.K.; Cheng, W.H.; Atwater, H.A. Near-infrared active metasurface for dynamic polarization conversion. Adv. Opt. Mater. 2021, 9, 2100230. [Google Scholar] [CrossRef]
- Salary, M.M.; Mosallaei, H. Tunable all-dielectric metasurfaces for phase-only modulation of transmitted light based on quasi-bound states in the continuum. ACS Photonics 2020, 7, 1813–1829. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Du, H.; Yan, X.; Banakar, M.; Thomson, D.J.; Hewak, D.W.; Muskens, O.L. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv. 2021, 7, eabg3500. [Google Scholar] [CrossRef]
- Yin, X.; Jin, J.; Soljačić, M.; Peng, C.; Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 2020, 580, 467–471. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Wang, H.; Hu, Y.; Yin, X.; Hu, W.; Peng, C. All-pass phase shifting enabled by symmetric topological unidirectional guided resonances. Opt. Lett. 2022, 47, 2875–2878. [Google Scholar] [CrossRef]
- Yin, X.; Inoue, T.; Peng, C.; Noda, S. Topological unidirectional guided resonances emerged from interband coupling. Phys. Rev. Lett. 2023, 130, 056401. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hong, Q.; Peng, J.; Liu, P.; Yang, B.; Guo, C.; Zhu, Z. Reflectionless graphene perfect absorber based on parity symmetric unidirectional guided resonance. Opt. Lett. 2023, 48, 5963–5966. [Google Scholar] [CrossRef]
- Zhen, B.; Hsu, C.W.; Lu, L.; Stone, A.D.; Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 2014, 113, 257401. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, A.; Liu, W.; Hsu, C.W.; Wang, B.; Guan, F.; Liu, X.; Shi, L.; Lu, L.; Zi, J. Observation of polarization vortices in momentum space. Phys. Rev. Lett. 2018, 120, 186103. [Google Scholar] [CrossRef]
- Xu, W.; Hong, Q.; Liu, P.; Peng, J.; Yang, B.; Zhang, J.; Zhu, Z. High quality factor unidirectional guided resonances of a silicon-on-lithium niobate photonic crystal slab for a tunable Gires–Tournois interferometer. Opt. Lett. 2023, 48, 4761–4764. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.H.; Magnusson, R. Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance? Optica 2018, 5, 289–294. [Google Scholar] [CrossRef]
- Moitra, P.; Slovick, B.A.; Gang Yu, Z.; Krishnamurthy, S.; Valentine, J. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 2014, 104, 171102. [Google Scholar] [CrossRef]
- Aspnes, D. Local-field effects and effective-medium theory: A microscopic perspective. Am. J. Phys. 1982, 50, 704–709. [Google Scholar] [CrossRef]
- Fang, Z.; Chen, R.; Zheng, J.; Khan, A.I.; Neilson, K.M.; Geiger, S.J.; Callahan, D.M.; Moebius, M.G.; Saxena, A.; Chen, M.E.; et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol. 2022, 17, 842–848. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Chen, W.; Zhang, X.; Hong, Q.; Xu, P.; Zhu, M.; Xu, W. Highly Efficient and Tunable Linear-to-Circular Polarization Conversion Enabled by Topological Unidirectional Guided Resonance. Photonics 2025, 12, 1095. https://doi.org/10.3390/photonics12111095
Zou Y, Chen W, Zhang X, Hong Q, Xu P, Zhu M, Xu W. Highly Efficient and Tunable Linear-to-Circular Polarization Conversion Enabled by Topological Unidirectional Guided Resonance. Photonics. 2025; 12(11):1095. https://doi.org/10.3390/photonics12111095
Chicago/Turabian StyleZou, Yongchao, Wen Chen, Xiao Zhang, Qilin Hong, Pan Xu, Min Zhu, and Wei Xu. 2025. "Highly Efficient and Tunable Linear-to-Circular Polarization Conversion Enabled by Topological Unidirectional Guided Resonance" Photonics 12, no. 11: 1095. https://doi.org/10.3390/photonics12111095
APA StyleZou, Y., Chen, W., Zhang, X., Hong, Q., Xu, P., Zhu, M., & Xu, W. (2025). Highly Efficient and Tunable Linear-to-Circular Polarization Conversion Enabled by Topological Unidirectional Guided Resonance. Photonics, 12(11), 1095. https://doi.org/10.3390/photonics12111095

