Novel THz Metasurface Biosensor for High-Sensitivity Detection of Vitamin C and Vitamin B9
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. THz Spectroscopy Measurement
2.4. Theoretical Calculation
3. Results and Discussion
3.1. Theoretical and Experimental Spectral Comparison of VC and VB9
3.2. Vibrational Mode Assignment of VC and VB9
3.3. Design and Fabrication of THz Metasurface Biosensor
3.4. Detection of VC and VB9 Based on THz Metasurface Biosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Fowler, A.A. Vitamin C: Rationale for Its Use in Sepsis-Induced Acute Respiratory Distress Syndrome (ARDS). Antioxidants 2024, 13, 95. [Google Scholar] [CrossRef]
- Isola, S.; Gammeri, L.; Furci, F.; Gangemi, S.; Pioggia, G.; Allegra, A. Vitamin C Supplementation in the Treatment of Autoimmune and Onco-Hematological Diseases: From Prophylaxis to Adjuvant Therapy. Int. J. Mol. Sci. 2024, 25, 7284. [Google Scholar] [CrossRef] [PubMed]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P.; et al. Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef] [PubMed]
- Kancherla, V.; Botto, L.D.; Rowe, L.A.; Shlobin, N.A.; Caceres, A.; Smith, A.A.; Zimmerman, K.; Blount, J.; Kibruyisfaw, Z.; Ghotme, K.A.; et al. Preventing birth defects, saving lives, and promoting health equity: An urgent call to action for universal mandatory food fortification with folic acid. Lancet Glob. Health 2022, 10, 1053–1057. [Google Scholar] [CrossRef]
- Nawaz, F.Z.; Kipreos, E.T. Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends Endocrinol. Metab. 2022, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Zwart, N.R.K.; Franken, M.D.; Tissing, W.J.E.; Lubberman, F.J.E.; McKay, J.A.; Kampman, E.; Kok, D.E. Folate, folic acid, and chemotherapy-induced toxicities: A systematic literature review. Crit. Rev. Oncol./Hematol. 2023, 188, 104061. [Google Scholar] [CrossRef] [PubMed]
- Shulpekova, Y.; Nechaev, V.; Kardasheva, S.; Sedova, A.; Kurbatova, A.; Bueverova, E.; Kopylov, A.; Malsagova, K.; Dlamini, J.C.; Ivashkin, V. The Concept of Folic Acid in Health and Disease. Molecules 2021, 26, 3731. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Qian, X.; Zhang, J.; Zheng, Z.; Chen, Y. Simultaneous determination of organic acids and VC content in fruits and vegetables using high performance liquid chromatography. Hubei Agric. Sci. 2024, 63, 171–175+184. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, K.; Liu, Z.; Xu, Z. The determination of folie acid in drug and food by high performanceliquid chromatography. Chem. Res. Appl. 2024, 36, 910–915. [Google Scholar]
- Brainina, K.Z.; Bukharinova, M.A.; Stozhko, N.Y.; Sokolkov, S.V.; Tarasov, A.V.; Vidrevich, M.B. Electrochemical Sensor Based on a Carbon Veil Modified by Phytosynthesized Gold Nanoparticles for Determination of Ascorbic Acid. Sensors 2020, 20, 1800. [Google Scholar] [CrossRef] [PubMed]
- Kuceki, M.; de Oliveira, F.M.; Segatelli, M.G.; Coelho, M.K.L.; Pereira, A.C.; da Rocha, L.R.; Mendonça, J.C.; Tarley, C.R.T. Selective and sensitive voltammetric determination of folic acid using graphite/restricted access molecularly imprinted poly(methacrylic acid)/SiO2 composite. J. Electroanal. Chem. 2018, 818, 223–230. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Liu, W.; Ding, F.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase. Microchim. Acta 2019, 186, 246. [Google Scholar] [CrossRef]
- May, B.M.M.; Parani, S.; Rajendran, J.V.; Oluwafemi, O.S. Selective detection of folic acid in the midst of other biomolecules using water-soluble AgInS2 quantum dots. MRS Commun. 2019, 9, 1306–1310. [Google Scholar] [CrossRef]
- Isane, S.P.; Waghmare, S.A.; Kamble, H.V. A Review on Method Development, Validation, Optimization and Applications of HPLC. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 1860–1867. [Google Scholar] [CrossRef]
- Lakard, S.; Pavel, I.A.; Lakard, B. Electrochemical Biosensing of Dopamine Neurotransmitter: A Review. Biosensors 2021, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.d.P.; Yamada-Ogatta, S.F.; Teixeira Tarley, C.R. Electrochemical and Bioelectrochemical Sensing Platforms for Diagnostics of COVID-19. Biosensors 2023, 13, 336. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, W.; Nong, Y.; Zhu, P.; Lu, Y.; Wu, Q. Fluorescence analysis for water characterization: Measurement processes, influencing factors, and data analysis. Water Reuse 2022, 13, 33–50. [Google Scholar] [CrossRef]
- Chen, H.; Han, J.; Liu, J.; Gao, L.; Ma, S. Identification of chiral lansoprazole drugs using THz fingerprint spectroscopy. Chem. Pap. 2022, 77, 887–893. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Liu, K.; Li, H.; Xu, Y.; Jiang, X.; Xu, Y.; Wang, Q.; Cao, T.; Tian, Z. Nonvolatile reconfigurable terahertz wave modulator. PhotoniX 2022, 3, 7. [Google Scholar] [CrossRef]
- Smolyanskaya, O.A.; Chernomyrdin, N.V.; Konovko, A.A.; Zaytsev, K.I.; Ozheredov, I.A.; Cherkasova, O.P.; Nazarov, M.M.; Guillet, J.-P.; Kozlov, S.A.; Kistenev, Y.V.; et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quantum Electron. 2018, 62, 1–77. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, L.; Wu, X.; Peng, Y. Review on near-field detection technology in the biomedical field. Adv. Photonics Nexus 2023, 2, 044002. [Google Scholar] [CrossRef]
- Shi, C.; Xu, W.; Peng, Y. Applications of terahertz imaging technology in tumor detection. Opto-Electron. Eng. 2020, 47, 190638. [Google Scholar] [CrossRef]
- Takahashi, M.; Okamura, N.; Ding, X.; Shirakawaa, H.; Minamide, H. Intermolecular hydrogen bond stretching vibrations observed in terahertz spectra of crystalline vitamins. CrystEngComm 2018, 20, 1960–1969. [Google Scholar] [CrossRef]
- Kang, J.; Song, J.; Jung, T.S.; Kwak, K.; Chun, H.S. In-Situ Measurement of Vitamin C Content in Commercial Tablet Products by Terahertz Time-Domain. J. Infrared Millim. Terahertz Waves 2018, 39, 367–377. [Google Scholar] [CrossRef]
- Trainiti, G.; Xia, Y.W.; Marconi, J.; Cazzulani, G.; Erturk, A.; Ruzzene, M. Time-Periodic Stiffness Modulation in Elastic Metamaterials for Selective Wave Filtering: Theory and Experiment. Phys. Rev. Lett. 2019, 122, 124301. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xu, Y.; Sheng, H.; Chen, X.; Li, R.; Chen, Q.; Chou, X.; Chen, Q.; Vickers, A.; Akbar, J.; et al. THz-Metasurface Device with Multiple Resonance Modes. Semicond. Optoelectron. 2024, 45, 181. [Google Scholar] [CrossRef]
- Singh, Y.; Mishra, A.C.; Yadav, S.; Jaiswal, L.; Lohia, P.; Dwivedi, D.K.; Yadav, R.K.; Eldesoky, G.E.; Hossain, M.K. High-Performance Plasmonic Biosensor for Blood Cancer Detection: Achieving Ultrahigh Figure-of-Merit. Plasmonics 2024, 9. [Google Scholar] [CrossRef]
- Nie, A.; He, X.; Cao, W. Carbon-based ultrabroadband tunable terahertz metasurface absorber. Adv. Photonics Nexus 2024, 3, 016007. [Google Scholar] [CrossRef]
- Fu, W.; Sun, L.; Cao, H.; Chen, L.; Zhou, M.; Shen, S.; Zhu, Y.; Zhuang, S. Qualitative and Quantitative Recognition of Volatile Organic Compounds in Their Liquid Phase Based on Terahertz Microfluidic EIT Meta-Sensors. IEEE Sens. J. 2023, 23, 12775–12784. [Google Scholar] [CrossRef]
- Men, K.; Lian, Z.; Tu, H.; Zhao, H.; Wei, Q.; Jin, Q.; Mao, C.; Wei, F. An All-Dielectric Metamaterial Terahertz Biosensor for Cytokine Detection. Micromachines 2024, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Shen, S.; Chen, L.; Zhu, Y.; Zhuang, S. Frequency selective fingerprint sensor: The Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement. PhotoniX 2023, 4, 28. [Google Scholar] [CrossRef]
- Yan, X.; Liang, L.; Yan, R.; Wu, G.; Yao, H.; Li, Z.; Wang, Z.; Hu, X.; Li, Y.; Zhang, Y. Fano resonance-integrated metal nanoparticles’ enhanced sensing for pesticide detection. Opt. Express 2024, 32, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, L.; Wang, J.; Sun, L.; Jiao, Y.; Meng, Y.; Chen, S.; Chang, C.; Fan, C. Electric Fano resonance-based terahertz metasensors. Nanoscale 2021, 13, 18467–18472. [Google Scholar] [CrossRef]
- Liu, B.; Peng, Y.; Hao, Y.; Zhu, Y.; Chang, S.; Zhuang, S. Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface. PhotoniX 2024, 5, 10. [Google Scholar] [CrossRef]
- Shih, K.L.; Pitchappa, P.; Jin, L.; Chen, C.; Singh, R.; Lee, C. Nanofluidic terahertz metasensor for sensing in aqueous environment. Appl. Phys. Lett. 2018, 113, 071105. [Google Scholar] [CrossRef]
- Salehnezhad, Z.; Soroosh, M.; Mondal, H. A Highly Sensitive Plasmonic Graphene-Based Structure for Deoxyribonucleic Acid Detection. Photonics 2024, 11, 549. [Google Scholar] [CrossRef]
- Gao, S.; Li, H.; Liu, L.; Tian, Y.; Wang, F.; Pan, X.; Wen, F.; Xiang, J.; Nie, A.; Zhai, K.; et al. Ultrasensitive CCL2 Detection in Urine for Diabetic Nephropathy Diagnosis Using a WS2-Based Plasmonic Biosensor. Nano Lett. 2024, 24, 5301–5307. [Google Scholar] [CrossRef]
- Sengupta, R.; Khand, H.; Sarusi, G. Terahertz impedance spectroscopy of biological nanoparticles by a resonant metamaterial chip for breathalyzer-based COVID-19 prompt tests. Nano Mater 2022, 5, 5803–5812. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Lee, S.; Lee, S.; Kwak, J.; Song, H.S.; Seo, M. Detection and discrimination of SARS-CoV-2 spike protein-derived peptides using THz metamaterials. Biosens. Bioelectron. 2022, 202, 113981. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Liu, Y.; Kong, R.; Nie, T.; Sun, Y.; Li, H.; Sun, T.; Pandey, C.; Wang, Y.; Zhang, H.; et al. Near-field terahertz sensing of hela cells and pseudomonas based on monolithic integrated metamaterials with a spintronic terahertz emitter. Nano Mater. 2020, 12, 35895–35902. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, B.; Li, Z.; Li, D.; Hu, F.; Zhang, H.; Yu, L. Analysis of reaction between vitamin B6 and bovine serum albumin based on a terahertz metamaterial sensor. Appl. Opt. 2022, 61, 7978–7984. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Cao, H.; Chen, L.; Ma, Y.; Yang, Y.; Liu, X.; Wang, W.; Zhu, Y.; Zhuang, S. Terahertz reconfigurable metasensor for specific recognition multiple and mixed chemical substances based on AIT fingerprint enhancement. Talanta 2024, 269, 125481. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Fang, J.; Xue, J.; Liu, J.; Qin, J.; Hong, Z.; Li, J.; Du, Y. Pharmaceutical Cocrystals of Ethenzamide: Molecular Structure Analysis Based on Vibrational Spectra and DFT Calculations. Int. J. Mol. Sci. 2022, 23, 8850. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Hou, X.; Chen, X.; Li, T.; Li, Y.; Tian, Z.; Wang, M. Highly sensitive terahertz metamaterial biosensor for bovine serum albumin (BSA) detection. Opt. Mater. Express 2021, 11, 2268–2277. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Dong, L.; Zhou, W.; Rong, M.; Zhang, X.; Guo, J. Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor. Opt. Mater. Express 2021, 11, 2109–2121. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, T.; Zhang, J.; Liu, L.; Xie, J.; Wang, G.; Yao, J.; Zhu, W.; Ye, X. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics 2022, 11, 101–109. [Google Scholar] [CrossRef]
- Cen, W.; Lang, T.; Hong, Z.; Liu, J.; Xiao, M.; Zhang, J.; Yu, Z. Ultrasensitive Flexible Terahertz Plasmonic Metasurface Sensor Based on Bound States in the Continuum. IEEE Sens. J. 2022, 22, 12838–12845. [Google Scholar] [CrossRef]
- EL-Wasif, Z.; Ismail, T.; Hamdy, O. Design and optimization of highly sensitive multi-band terahertz metamaterial biosensor for coronaviruses detection. Opt. Quantum Electron. 2023, 55, 604. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Kang, J.; Li, W.; Yao, B.; Deng, H.; Wei, Y.; Jing, H.; Li, X.; Duan, J.; Zhang, B. Microstructure-based high-quality factor terahertz metamaterial bio-detection sensor. Adv. Compos. Hybrid Mater. 2023, 6, 100. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, J.; Yuan, Z.; Lin, Y.; Shang, W.; Chin, L.K.; Zhang, M. Terahertz Metamaterials for Biosensing Applications: A Review. Biosensors 2024, 14, 3. [Google Scholar] [CrossRef] [PubMed]
Vitamin | Theoretical Peak (THz) | Experimental Peak (THz) | Vibrational Mode * |
---|---|---|---|
VC | 1.75 | 1.78 | tw(−CH2OH) |
2.64 | 2.64 | tw(−CH2OH) | |
3.53 | 3.43 | tw(−CH2OH) | |
VB9 | 1.78 | 1.72 | w(-Ph-) + w(−COOH on α-carbon) |
2.79 | 2.71 | op(-pteridine ring) + ip (-Ph-) | |
3.52 | 3.52 | w(β-CH2-) + w(γ-CH2-) |
Year | Resonator Material | Resonance Type | Resonance Peak (THz) | Q-Factor | Reference |
---|---|---|---|---|---|
2021 | Al | LC resonance | 0.84 | 10.6 | [47] |
2021 | Au | EIT resonance | 0.94 | 24.6 | [48] |
1.56 | 100.7 | ||||
2022 | Au | Toroidal resonance | 2.39 | 15.2 | [49] |
2022 | Al | Fano resonance | 0.94 | 64 | [50] |
2023 | Au | Plasmon resonance | 1.97 | 19.1 | [51] |
3.37 | 156.0 | ||||
2023 | Cu | Magnetic dipole resonance | 0.47 | 55.3 | [52] |
2024 | Au | Plasmon resonance | 1.74 | 133.8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Liu, B.; Wu, X.; Peng, Y. Novel THz Metasurface Biosensor for High-Sensitivity Detection of Vitamin C and Vitamin B9. Photonics 2024, 11, 820. https://doi.org/10.3390/photonics11090820
Wang N, Liu B, Wu X, Peng Y. Novel THz Metasurface Biosensor for High-Sensitivity Detection of Vitamin C and Vitamin B9. Photonics. 2024; 11(9):820. https://doi.org/10.3390/photonics11090820
Chicago/Turabian StyleWang, Ningyi, Bingwei Liu, Xu Wu, and Yan Peng. 2024. "Novel THz Metasurface Biosensor for High-Sensitivity Detection of Vitamin C and Vitamin B9" Photonics 11, no. 9: 820. https://doi.org/10.3390/photonics11090820
APA StyleWang, N., Liu, B., Wu, X., & Peng, Y. (2024). Novel THz Metasurface Biosensor for High-Sensitivity Detection of Vitamin C and Vitamin B9. Photonics, 11(9), 820. https://doi.org/10.3390/photonics11090820