TSC-1 Offner Spectrometer Prototype Characterization
Abstract
:1. Introduction
1.1. Background Context
1.2. Offner Spectrometer Development
2. Prototype Mechanical Design Strategy
2.1. Material Choice
2.2. Optical Components
2.3. Mechanics
2.4. Detector Choice
3. Mechanical and Optical Alignments
4. Light Preparing Unit Setup
4.1. Point-Object Light Preparing Unit
4.2. Long-Slit Light Preparing Unit
5. Measurement Method
Spatial Resolution, Spectral Resolution, and Distortion Measurements
6. Optical Performance
6.1. Wavelength Registration Position Verification
6.2. Spatial and Spectral Resolutions
6.3. Distortions
6.4. Signal-to-Noise Ratio
6.5. Specimen Spectrum Measurement
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wanajaroen, W.; Buisset, C.; Lépine, T.; Chartsiriwattana, P.; Kosiyakul, M.; Prasit, A.; Saisutjarit, P.; Wannawichian, S.; Rujopakarn, W.; Poshyachinda, S.; et al. TSC-1 Optical Payload Hyperspectral Imager Preliminary Design and Performance Estimation. Photonics 2022, 9, 865. [Google Scholar] [CrossRef]
- Wanajaroen, W.; Lépine, T.; Buisset, C.; Castelnaue, M.; Costese, V.; Wannawichianf, S.; Poshyachindaa, S.; Soonthornthum, B. Hyperspectral Spectrometer Survey for State of Art Concept Identification. Proc. SPIE 2021, 11852, 1185268-2. [Google Scholar]
- Hamlin, L.; Green, R.O.; Mouroulis, P.; Eastwood, M.; Wilson, D.; Dudik, M.; Paine, C. Imaging spectrometer science measurements for Terrestrial Ecology: AVIRIS and new developments. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 5–12 March 2011. [Google Scholar]
- Pearlman, J.S.; Barry, P.S.; Segal, C.C.; Shepanski, J.; Beiso, D.; Carman, S.L. Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1160–1173. [Google Scholar] [CrossRef]
- Meini, M.; Battazza, F.; Formaro, R.; Bini, A. Progress in the Hyperspectral Payload for PRISMA Programme. Proc. SPIE Sens. Syst. Next-Gener. Satell. 2013, 8889, 88890R. [Google Scholar]
- Sang, B.; Schubert, J.; Kaiser, S.; Mogulsky, V.; Neumann, C.; Förster, K.-P.; Hofer, S.; Stuffler, T.; Kaufmann, H.; Müller, A.; et al. The EnMAP hyperspectral imaging spectrometer: Instrument concept, calibration, and technologies. Proc. SPIE 2008, 7086, 708605. [Google Scholar]
- Krutz, D.; Sebastian, I.; Eckardt, A.; Venus, H.; Walter, I.; Günther, B.; Säuberlich, T.; Neidhardt, M.; Zender, B.; Lieder, M.; et al. DESIS—DLR Earth sensing imaging spectrometer for the International Space Station ISS. Proc. SPIE 2018, 10785, 107850K-1. [Google Scholar]
- Liu, Y.-N.; Sun, D.-X.; Hu, X.-N.; Ye, X.; Li, Y.-D.; Liu, S.-F.; Cao, K.-Q.; Chai, M.-Y.; Zhou, W.-Y.-N.; Zhang, J.; et al. The Advanced Hyperspectral Imager: Aboard China’s GaoFen-5 Satellite. IEEE Geosci. Remote Sens. 2019, 7, 4. [Google Scholar] [CrossRef]
- Gross, H.; Blechinger, F.; Achtner, B. Handbook of Optical Systems, 1st ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; p. 201. [Google Scholar]
- Qian, S. Hyperspectral Satellites and System Design, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Song, P.; Yang, C.; Bai, Y.; Ding, J.; Guo, J.; Li, C.; Wang, Y.; Xue, C. High-precision turning and ultra-smooth direct polishing of aluminum alloy mirrors. Opt. Express 2023, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- ISO 10110-7:2017; Optics and Photonics—Preparation of Drawings for Optical Elements and Systems—Part 7: Surface Imperfections. International Organization for Standardization: Geneva, Switzerland, 2017.
- Newsander, T.; Crowther, B.; Gubbels, G.; Senden, R. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications. Proc. SPIE 2013, 8837, 883704. [Google Scholar]
- Ferrario, I.; Rossi, M.; Ritucci, A.; Terraneo, M.; Zocchi, F.E.; Bianucci, G.; Conticello, S.S.; Esposito, M.; Maresi, L.; Marchi, A.Z.; et al. Hyperstreego: Reactive payload. In Proceedings of the 4S Symposium, Valletta, Malta, 20 May–3 June 2016. [Google Scholar]
- Blommaert, J.; Delauré, B.; Livens, S.; Nuyts, D.; Tack, K.; Lambrechts, A.; Morau, V.; Callut, E.; Habay, G.; Vanhoof, K.; et al. CHIEM: A new compact camera for hyperspectral imaging. In Proceedings of the Conference on Small Satellites, Logan, UT, USA, 7–10 August 2017. [Google Scholar]
- Ju, G.; Ma, H.; Gu, Z.; Yan, C. Experimental study on the extension of nodal aberration theory to pupil-offset off-axis three-mirror anastigmatic telescopes. J. Astron. Telesc. Instrum. Syst. 2019, 5, 029001. [Google Scholar] [CrossRef]
- Yang, T.-T.; Chen, X.-H.; Zhao, Z.-C.; Zhu, J.-C.; Shen, W.-M. Fast alignment of the Offner imaging spectrometer with spherical autostigmatic method. Proc. SPIE 2020, 11717, 1171702-1. [Google Scholar]
- Holdsworth, J.L.; Sharafutdinova, G.; Sanderson, M.J.; van Helden, D.F. Off-axis parabolic optical relays almost perfect imaging. Proc. SPIE 2011, 8011, 80112C-1. [Google Scholar]
- Seager, S.; Turner, E.L.; Schafer, J.; Ford, E.B. Vegetation’s Red Edge: A Possible Spectroscopic Biosignature of Extraterrestrial Plants. Astrobiology 2005, 5, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Li, H.; Li, C.; Wang, A.; Yang, Y.; Wang, P. Hyperspectral Sensing of Plant Diseases: Principle and Methods. Agronomy 2022, 12, 1451. [Google Scholar] [CrossRef]
- White, M.A.; De Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; Van Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. change Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Shivangi, S.S.; Aditi, V. Delhi Air Pollution Modeling Using Remote Sensing Technique. In Handbook of Environmental Materials Management; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Mohammed, G.H.; Mohammed, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [Google Scholar] [CrossRef] [PubMed]
Parameter | Specification | Measurement |
---|---|---|
Mechanical diameter | 101.6 mm +0.000/−0.025 | 101.594 mm |
Clear aperture | 90 mm ± 0.1 mm | 90 mm |
Radius of curvature | 102.181 ± 0.1% | 102.200 mm |
Surface irregularity | <150 nm (PTV) | 81 nm (PTV) |
Roughness | 3–4 nm | 3–4 nm RMS |
Scratch Dig pre-silver coating | ISO 10110-7:2017 [12] | compliance |
Scratch Dig post-silver coating | ISO 10110-7:2017 60-40 [12] | Visual inspection |
Substrate material | Aluminum 6061 T6 RSA [13] |
Parameter | Specification | Measurement |
---|---|---|
Thickness | 22.54 ± 0.02 mm | 22.560 mm |
Clear diameter | 20 ± 0.1 mm | 20 mm |
Radius of curvature | 51.481 mm ± 0.1% | 51.485 mm |
Grating density | 41 lines/mm | 41 lines/mm |
Blaze angle | optimized for = 500 nm at diffraction order +1 | 0.724° ± 0.05° |
Surface irregularity | <633 nm (PTV) | 586 nm PTV |
Roughness | <3 nm RMS | 3 nm RMS |
Scratch Dig | ISO 10110-7:2017 60-40 [12] | No surface defects |
Substrate material | AlSi40 RSA443 + NiP |
Wavelength (nm) | Sim. Position (mm) | Exp. Position (mm) | Departure (µm) |
---|---|---|---|
0th | 0 | 0 | 0 |
435.832 | 0.9423 | 0.9445 ± 2.6 | 2.2 |
546.073 | 1.1806 | 1.1825 ± 0 | 1.9 |
576.960 | 1.2474 | 1.2485 ± 0 | 1.1 |
696.543 | 1.5060 | 1.5070 ± 0 | 1.0 |
763.511 | 1.6508 | 1.6500 ± 0 | 0.8 |
810.369 | 1.7521 | 1.7545 ± 0 | 2.4 |
826.452 | 1.7869 | 1.7875 ± 0 | 0.6 |
840.821 | 1.8180 | 1.8220 ± 2.6 | 2.5 |
912.298 | 1.9726 | 1.9745 ± 0 | 1.9 |
Wavelength (nm) | FWHM | |||
---|---|---|---|---|
Spatial Direction (µm) | Spectral Direction (nm) | |||
sim. | exp. | sim. | exp. | |
405 | 21.3 | 21.5 ± 0.1 | 7.4 | 7.7 ± 0.1 |
505 | 21.0 | 21.0 ± 0.2 | 7.3 | 7.3 ± 0.1 |
595 | 21.6 | 21.6 ± 0.2 | 7.5 | 7.6 ± 0.1 |
700 | 22.5 | 22.6 ± 0.1 | 7.7 | 7.9 ± 0.1 |
810 | 23.1 | 23.2 ± 0.2 | 8.4 | 8.4 ± 0.1 |
880 | 23.6 | 23.8 ± 0.1 | 8.5 | 8.6 ± 0.1 |
970 | 23.9 | 24.1 ± 0.2 | 8.6 | 8.7 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanajaroen, W.; Lepine, T.; Chartsiriwattana, P.; Wannawichian, S.; Rujopakarn, W.; Poshyachinda, S.; Soonthornthum, B. TSC-1 Offner Spectrometer Prototype Characterization. Photonics 2024, 11, 644. https://doi.org/10.3390/photonics11070644
Wanajaroen W, Lepine T, Chartsiriwattana P, Wannawichian S, Rujopakarn W, Poshyachinda S, Soonthornthum B. TSC-1 Offner Spectrometer Prototype Characterization. Photonics. 2024; 11(7):644. https://doi.org/10.3390/photonics11070644
Chicago/Turabian StyleWanajaroen, Weerapot, Thierry Lepine, Pearachad Chartsiriwattana, Suwicha Wannawichian, Wiphu Rujopakarn, Saran Poshyachinda, and Boonrucksar Soonthornthum. 2024. "TSC-1 Offner Spectrometer Prototype Characterization" Photonics 11, no. 7: 644. https://doi.org/10.3390/photonics11070644
APA StyleWanajaroen, W., Lepine, T., Chartsiriwattana, P., Wannawichian, S., Rujopakarn, W., Poshyachinda, S., & Soonthornthum, B. (2024). TSC-1 Offner Spectrometer Prototype Characterization. Photonics, 11(7), 644. https://doi.org/10.3390/photonics11070644