13.5 μJ, 20 kHz Repetition Rate, Single Frequency Pr3+:YLF Master Oscillator Power Amplifier System
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Setup
4. Experimental Results and Discussion
4.1. Oscillator
4.2. Amplifier
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drueppel, M.; Duhme, D.; Ehlert, K.; Fischer, B.; Hansen, J.; Kaup, M.; Poertner, L.; Tebruegge, C.; Willeke, B.; Willrodt, J.-H. Laser Light Source Unit, Illumination Apparatus and Method for Generating Laser Light. U.S. Patent Application 16/887,840, 17 September 2020. [Google Scholar]
- Ji, S.; Lin, X.; Chen, M.; Rong, X.; Xu, H.; Li, W.; Cai, Z. Green Wavelength-Tunable and High Power Ho3+-Doped Upconversion Fiber Lasers. IEEE Photonics Technol. Lett. 2020, 32, 313–316. [Google Scholar] [CrossRef]
- Sottile, A.; Damiano, E.; Di Lieto, A.; Tonelli, M. Diode-pumped solid-state laser platform for compact and long-lasting strontium-based optical clocks. Opt. Lett. 2019, 44, 594–597. [Google Scholar] [PubMed]
- Fujita, S.; Tanaka, H.; Kannari, F. Intracavity second-harmonic pulse generation at 261 and 320 nm with a Pr3+: YLF laser Q-switched by a Co2+:MgAl2O4 spinel saturable absorber. Opt. Express 2019, 27, 38134–38146. [Google Scholar] [PubMed]
- Niu, N.; Pu, S.; Chen, Q.; Wang, Y.; Zhao, Y.; Wu, W.; Zheng, Q. 302 nm continuous wave generation by intracavity frequency doubling of a diode-pumped Pr:YLF laser. Appl. Opt. 2018, 57, 9798–9802. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y.; Fujita, S.; Shioya, Y.; Kannari, F. 640-nm Pr:YLF regenerative amplifier seeded by gainswitched laser diode pulses. Appl. Opt. 2020, 59, 5098–5101. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Dai, W.; Yu, Y.; Dong, Y.; Jin, G. Mode evolution mechanism of Pr3+:YLF single longitudinal mode laser. Appl. Phys. B 2020, 126, 112. [Google Scholar] [CrossRef]
- Schellhorn, M.; Hirth, A. Modeling of intracavity-pumped quasi-three-level lasers. IEEE J. Quantum Electron. 2002, 38, 1455–1464. [Google Scholar] [CrossRef]
- Rustad, G.; Stenersen, K. Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion. IEEE J. Quantum Electron. 1996, 32, 1645–1656. [Google Scholar] [CrossRef]
- Stoneman, R.C.; Esterowitz, L. Efficient 1.94-μm Tm:YALO laser. IEEE J. Sel. Top. Quantum Electron. 1995, 1, 78–81. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, W.; Jin, L.; Liu, C.; Dong, Y.; Jin, G. 13.5 μJ, 20 kHz Repetition Rate, Single Frequency Pr3+:YLF Master Oscillator Power Amplifier System. Photonics 2023, 10, 903. https://doi.org/10.3390/photonics10080903
Dai W, Jin L, Liu C, Dong Y, Jin G. 13.5 μJ, 20 kHz Repetition Rate, Single Frequency Pr3+:YLF Master Oscillator Power Amplifier System. Photonics. 2023; 10(8):903. https://doi.org/10.3390/photonics10080903
Chicago/Turabian StyleDai, Weicheng, Long Jin, Chang Liu, Yuan Dong, and Guangyong Jin. 2023. "13.5 μJ, 20 kHz Repetition Rate, Single Frequency Pr3+:YLF Master Oscillator Power Amplifier System" Photonics 10, no. 8: 903. https://doi.org/10.3390/photonics10080903
APA StyleDai, W., Jin, L., Liu, C., Dong, Y., & Jin, G. (2023). 13.5 μJ, 20 kHz Repetition Rate, Single Frequency Pr3+:YLF Master Oscillator Power Amplifier System. Photonics, 10(8), 903. https://doi.org/10.3390/photonics10080903