Optical Chaos in Saturated Nonlinear Media
Abstract
1. Introduction
2. Experimental Setup
3. Numerical Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haken, H. Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 1975, 53, 77–78. [Google Scholar] [CrossRef]
- Gibbs, H.M.; Hopf, F.A.; Kaplan, D.L.; Shoemaker, R.L. Observation of chaos in optical bistability. Phys. Rev. Lett. 1981, 46, 474. [Google Scholar] [CrossRef]
- Weiss, C.O.; Klische, W.; Ering, P.S.; Cooper, M. Instabilities and chaos of a single mode NH3 ring laser. Opt. Commun. 1985, 52, 405–408. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Shi, G. Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 2011, 62, 1531–1539. [Google Scholar] [CrossRef]
- Crawford, J.D. Introduction to bifurcation theory. Rev. Mod. Phys. 1991, 63, 991. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, W.; Feng, Y.; Deng, D. Spatiotemporal self-accelerating Airy–Hermite–Gaussian and Airy–helical–Hermite–Gaussian wave packets in strongly nonlocal nonlinear media. Opt. Commun. 2019, 441, 195–207. [Google Scholar] [CrossRef]
- Rodrigues Gonçalves, M.; Rozenman, G.G.; Zimmermann, M.; Efremov, M.A.; Case, W.B.; Arie, A.; Shemer, L.; Schleich, W.P. Bright and dark diffractive focusing. Appl. Phys. B 2022, 128, 51. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Schleich, W.P.; Shemer, L.; Arie, A. Periodic wave trains in nonlinear media: Talbot revivals, Akhmediev breathers, and asymmetry breaking. Phys. Rev. Lett. 2022, 128, 214101. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Shemer, L.; Arie, A. Observation of accelerating solitary wavepackets. Phys. Rev. E 2020, 101, 050201. [Google Scholar] [CrossRef]
- Chen, Y.; Hosseini, B.; Owhadi, H.; Stuart, A.M. Solving and learning nonlinear PDEs with Gaussian processes. J. Comput. Phys. 2021, 447, 110668. [Google Scholar] [CrossRef]
- Gupta, N. Multi Gaussian Breather Solitons in Diffraction Managed Nonlinear Optical Media. Nonlinear Opt. Quantum Opt. Concepts Mod. Opt. 2022, 55, 309–330. [Google Scholar]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463. [Google Scholar] [CrossRef]
- Xin, F.; Di Mei, F.; Falsi, L.; Pierangeli, D.; Conti, C.; Agranat, A.J.; DelRe, E. Evidence of chaotic dynamics in three-soliton collisions. Phys. Rev. Lett. 2021, 127, 133901. [Google Scholar] [CrossRef]
- Eberhard, M.; Savojardo, A.; Maruta, A.; Römer, R.A. Rogue wave generation by inelastic quasi-soliton collisions in optical fibres. Opt. Express 2017, 25, 28086–28099. [Google Scholar] [CrossRef]
- Peng, J.; Tarasov, N.; Sugavanam, S.; Churkin, D. Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser. Opt. Express 2016, 24, 21256–21263. [Google Scholar] [CrossRef]
- Hermann-Avigliano, C.; Salinas, I.A.; Rivas, D.A.; Real, B.; Mančić, A.; Mejía-Cortés, C.; Maluckov, A.; Vicencio, R.A. Spatial rogue waves in photorefractive SBN crystals. Opt. Lett. 2019, 44, 2807–2810. [Google Scholar] [CrossRef]
- Chen, Z.; Li, F.; Lou, C. Statistical study on rogue waves in Gaussian light field in saturated nonlinear media. Chin. Opt. Lett. 2022, 20, 081901. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, H.; Qing, T. Nonlinear dynamics of slider crank mechanism with rubber linkage. J. Mech. Electr. Gineering 2020, 37, 607–613. [Google Scholar]
- Lyapunov, A.M. The general problem of the stability of motion. Int. J. Control 1992, 55, 531–534. [Google Scholar] [CrossRef]
- Murakami, A.; Shore, K. Mean spectral phase and detection of masked periodic signals in chaotic carriers. IET Optoelectron. 2011, 5, 114–120. [Google Scholar] [CrossRef]
- Allio, R.; Guzmán-Silva, D.; Cantillano, C.; Morales-Inostroza, L.; Lopez-Gonzalez, D.; Etcheverry, S.; Vicencio, R.A.; Armijo, J. Photorefractive writing and probing of anisotropic linear and nonlinear lattices. J. Opt. 2015, 17, 025101. [Google Scholar] [CrossRef]
- Qian, X.-M.; Zhu, W.-Y.; Rao, R.-Z. Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence. Chin. Phys. B 2012, 21, 094202. [Google Scholar] [CrossRef]
- Baozhou, L. Research on Power Spectrum Estimation and Improved Algorithm of Periodic Graph Method. Electron. Meas. Technol. 2020, 43, 76–79. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Cedeño González, J.R.; Flores, J.J.; Fuerte-Esquivel, C.R.; Moreno-Alcaide, B.A. Nearest neighbors time series forecaster based on phase space reconstruction for short-term load forecasting. Energies 2020, 13, 5309. [Google Scholar] [CrossRef]
- Deeming, T.J. Fourier analysis with unequally-spaced data. Astrophys. Space Sci. 1975, 36, 137–158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Chen, Z.; Song, J.; Li, M.; Lou, C. Optical Chaos in Saturated Nonlinear Media. Photonics 2023, 10, 600. https://doi.org/10.3390/photonics10050600
Li F, Chen Z, Song J, Li M, Lou C. Optical Chaos in Saturated Nonlinear Media. Photonics. 2023; 10(5):600. https://doi.org/10.3390/photonics10050600
Chicago/Turabian StyleLi, Fuqiang, Ziyang Chen, Jie Song, Meng Li, and Cibo Lou. 2023. "Optical Chaos in Saturated Nonlinear Media" Photonics 10, no. 5: 600. https://doi.org/10.3390/photonics10050600
APA StyleLi, F., Chen, Z., Song, J., Li, M., & Lou, C. (2023). Optical Chaos in Saturated Nonlinear Media. Photonics, 10(5), 600. https://doi.org/10.3390/photonics10050600