Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights
Abstract
1. Introduction
2. Structure and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Guo, Z.; Zhou, K.; Ran, L.; Zhu, L.; Wang, W.; Sun, Y.; Shen, F.; Gao, J.; Liu, S. Circular polarization analyzer based on an Archimedean nano-pinholes array. Opt. Express 2015, 23, 30523–30531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Liu, H.; Cheng, H.; Tian, J.G.; Chen, S.Q. Multi-dimensional manipulation of wave fields based on artificial microstructures. Opto-Electron. Adv. 2020, 3, 200002. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Zhang, Y. Simultaneous airy beam generation for both surface plasmon polaritons and transmitted wave based on metasurface. Opt. Express 2017, 25, 23589–23596. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.Z.; Lv, T.G.; Zhang, Y.P.; Yu, B.B.; Lian, J.Q.; Jing, M.; Zhang, D.W. Polarization controllable device for simultaneous generation of surface plasmon polariton bessel-like beams and bottle beams. Nanomaterials 2018, 8, 975. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, P.; Feng, X.; Xu, Y.; Liu, F.; Cui, K.; Zhang, W.; Huang, Y. Dynamically sculpturing plasmonic vortices: From integer to fractional orbital angular momentum. Sci. Rep. 2016, 6, 36269. [Google Scholar] [CrossRef] [PubMed]
- Garoli, D.; Zilio, P.; Gorodetski, Y.; Tantussi, F.; De Angelis, F. Optical vortex beam generator at nanoscale level. Sci. Rep. 2016, 6, 29547. [Google Scholar] [CrossRef]
- Song, E.Y.; Lee, S.Y.; Hong, J.; Lee, K.; Lee, Y.; Lee, G.Y.; Kim, H.; Lee, B. A double-lined metasurface for plasmonic complex-field generation. Laser Photonics Rev. 2016, 10, 299–306. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, K.; Lee, G.Y.; Lee, B. Polarization-multiplexed plasmonic phase generation with distributed nanoslits. Opt. Express 2015, 23, 15598–15607. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, K.; Kim, S.J.; Park, H.; Kim, K.Y.; Lee, B. Plasmonic meta-slit: Shaping and controlling near-field focus. Optica 2015, 2, 6–13. [Google Scholar] [CrossRef]
- Lin, J.; Mueller, J.P.B.; Wang, Q.; Yuan, G.; Antoniou, N.; Yuan, X.C.; Capasso, F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013, 340, 331–334. [Google Scholar] [CrossRef]
- Bachman, K.A.; Peltzer, J.J.; Flammer, P.D.; Furtak, T.E.; Collins, R.T.; Hollingsworth, R.E. Spiral plasmonic nanoantennas as circular polarization transmission filters. Opt. Express 2012, 20, 1308–1319. [Google Scholar] [CrossRef]
- Ziegler, J.I.; Haglund, R.F. Plasmonic response of nanoscale spirals. Nano Lett. 2010, 10, 3013–3018. [Google Scholar] [CrossRef] [PubMed]
- Gorodetski, Y.; Niv, A.; Kleiner, V.; Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 2008, 101, 043903. [Google Scholar] [CrossRef] [PubMed]
- Afshinmanesh, F.; White, J.S.; Cai, W.; Brongersma, M.L. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 2012, 1, 125–129. [Google Scholar] [CrossRef]
- Zaman, M.A.; Hesselink, L. Dynamically controllable plasmonic tweezers using C-shaped nano-engravings. Appl. Phys. Lett. 2022, 121, 181108. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef]
- Feng, J.; Li, D.; Pacifici, D. Circular slit-groove plasmonic interferometers: A generalized approach to high-throughput biochemical sensing [invited]. Opt. Mater. Express 2015, 5, 2742–2753. [Google Scholar] [CrossRef]
- Zhou, H.; Su, S.; Ma, H.; Zhao, Z.; Lin, Z.; Qiu, W.; Qiu, P.; Huang, B.; Kan, Q. Chiral graphene plasmonic archimedes’ spiral nanostructure with tunable circular dichroism and enhanced sensing performance. Opt. Express 2020, 28, 31954–31966. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, G.; Gao, Y.; Wu, B.; Wan, C.; Jian, S. Graphene circular polarization analyzer based on spiral metal triangle antennas arrays. Opt. Express 2015, 23, 24730–24737. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, G.; Gao, Y.; Wu, B.; Wan, C.; Jian, S. Graphene circular polarization analyzer based on unidirectional excitation of plasmons. Opt. Express 2015, 23, 32420–32428. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, G.; Cryan, M.J.; Wan, C.; Gao, Y.; Yang, Y.; Jian, S. Tunable graphene-coated spiral dielectric lens as a circular polarization analyzer. Opt. Express 2015, 23, 8348–8356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, Z.; Li, R.; Wang, W.; Zhang, A.; Liu, J.; Qu, S.; Gao, J. Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure. Plasmonics 2015, 10, 1255–1261. [Google Scholar] [CrossRef]
- Li, J.; Tang, P.; Liu, W.; Huang, T.; Wang, J.; Wang, Y.; Lin, F.; Fang, Z.; Zhu, X. Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation. Appl. Phys. Lett. 2015, 106, 161106. [Google Scholar] [CrossRef]
- Li, R.; Guo, Z.; Wang, W.; Zhang, J.; Zhang, A.; Liu, J.; Qu, S.; Gao, J. Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators. Opt. Express 2014, 22, 27968–27975. [Google Scholar] [CrossRef]
- Chen, W.; Nelson, R.L.; Zhan, Q. Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt. Lett. 2012, 37, 1442–1444. [Google Scholar] [CrossRef] [PubMed]
- Zhi, W.; Chen, W.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q. Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers. Opt. Lett. 2010, 35, 1755–1757. [Google Scholar] [CrossRef]
- Chen, W.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett. 2010, 10, 2075–2079. [Google Scholar] [CrossRef]
- Yang, S.; Chen, W.; Nelson, R.L.; Zhan, Q. Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett. 2009, 34, 3047–3049. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Kan, Q.; Qu, S.; Zhang, Y. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons. Appl. Phys. Lett. 2015, 107, 243504. [Google Scholar] [CrossRef]
- Guo, W.P.; Liang, W.Y.; Cheng, C.W.; Wu, W.L.; Wang, Y.T.; Sun, Q.; Zu, S.; Misawa, H.; Cheng, P.J.; Chang, S.W.; et al. Chiral second-harmonic generation from monolayer WS2/Aluminum plasmonic vortex metalens. Nano lett. 2020, 20, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Gorodetski, Y.; Drezet, A.; Genet, C.; Ebbesen, T.W. Generating far-field orbital angular momenta from near-field optical chirality. Phys. Rev. Lett. 2013, 110, 203906. [Google Scholar] [CrossRef]
- Qiu, P.Z.; Bai, C.Y.; Mao, Y.H.; Zhang, D.W. Circular polarization analyzer based on surface plasmon polariton interference. Opt. Express 2021, 29, 37907–37916. [Google Scholar] [CrossRef] [PubMed]
- Yavas, O.; Kocabas, C. Plasmon interferometers for high-throughput sensing. Opt. Lett. 2012, 37, 3396–3398. [Google Scholar] [CrossRef]
- Uulu, D.A.; Ashirov, T.; Polat, N.; Yakar, O.; Balci, S.; Kocabas, C. Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair. Appl. Phys. Lett. 2019, 114, 251101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Bai, C.; Xu, Y.; Pang, T.; Zang, X.; Zeng, D.; Qiu, P. Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights. Photonics 2023, 10, 87. https://doi.org/10.3390/photonics10010087
Zhang L, Bai C, Xu Y, Pang T, Zang X, Zeng D, Qiu P. Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights. Photonics. 2023; 10(1):87. https://doi.org/10.3390/photonics10010087
Chicago/Turabian StyleZhang, Lina, Chunyan Bai, Yan Xu, Tao Pang, Xufeng Zang, Dakui Zeng, and Peizhen Qiu. 2023. "Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights" Photonics 10, no. 1: 87. https://doi.org/10.3390/photonics10010087
APA StyleZhang, L., Bai, C., Xu, Y., Pang, T., Zang, X., Zeng, D., & Qiu, P. (2023). Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights. Photonics, 10(1), 87. https://doi.org/10.3390/photonics10010087