Generation of Nitrous Oxide by Aerobic Denitrifiers Isolated from an Urban Wetland in Bogotá, Colombia
Abstract
1. Introduction
2. Materials and Methods
2.1. Reactivation of Strains and Selection
2.2. N2O Production Experiments
2.3. Quantification of Nitrous Oxide
2.4. DNA Extraction and Amplification of 16S rDNA and Functional Denitrification Genes
2.5. Sequencing and Metagenomics Analysis
3. Results
3.1. Microscopic Characterization of the Strains
3.2. N2O Production in Aerobic and Anaerobic Conditions
3.3. Presence of Functional Denitrification Genes in Bacterial Isolates and Sediment Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lan, X.; Thoning, K.W.; Dlugokencky, E.J. Trends in Globally Averaged CH4, N2O, and SF6 Determined from NOAA Global Monitoring Laboratory Measurements; Version 2024-06; NOAA Global Monitoring Laboratory: Boulder, CO, USA, 2024. [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar] [CrossRef]
- Tian, H.; Pan, N.; Thompson, R.L.; Canadell, J.G.; Suntharalingam, P.; Regnier, P.; Davidson, E.A.; Prather, M.; Ciais, P.; Muntean, M.; et al. Global nitrous oxide budget (1980–2020). Earth Syst. Sci. Data 2024, 16, 2543–2604. [Google Scholar] [CrossRef]
- Takaya, N.; Catalan-Sakairi, M.A.B.; Sakaguchi, Y.; Kato, I.; Zhou, Z.; Shoun, H. Aerobic denitrifying bacteria that produce low levels of Nitrous Oxide. Appl. Environ. Microbiol. 2003, 69, 3152–3157. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zheng, Y.; Liu, M.; Gong, J.; Zhang, X.; Yin, G.; You, L. Anaerobic ammonium oxidation (Anammox) bacterial diversity, abundance and activity in marsh sediments of the Yangtze Estuary. J. Geophys. Res. Biogeosciences 2013, 118, 1237–1246. [Google Scholar] [CrossRef]
- Kyoung-In, J.; Amith, A.; Okkyoung, C.h.; Byoung-In, S. Aerobic denitrification by a novel Pseudomonas sp. JN5 in different bioreactor systems. Water-Energy Nexus 2020, 2, 37–45. [Google Scholar]
- Suenaga, T.; Riya, S.; Hosomi, M.; Terada, A. Biokinetic characterization and activities of N2O-reducing bacteria in response to various oxygen levels. Front. Microbiol. 2018, 9, 697. [Google Scholar] [CrossRef]
- Canchala, T. Generación de Gases de Efecto Invernadero en los Sedimentos de un Humedal Natural Eutrofizado: Influencia de Nutrientes (N y P). Master’s Thesis, Universidad del Valle, Cali, Colombia, 2014. [Google Scholar]
- Castro-Gonzalez, M.; Torres Valdés, M. Gases invernadero en aguas con bajo oxígeno en el reservorio eutrófico de Prado (Colombia). Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2015, 39, 399–407. [Google Scholar] [CrossRef]
- Castro-González, M.; González, A. La producción neta de óxido nitroso en un humedal urbano en Colombia es principalmente influenciada por cambios estacionales. Limnetica 2020, 39, 693–709. [Google Scholar] [CrossRef]
- Bharam, M.; Espenberg, M.; Pärn, J.; Lehtovirta-Morley, L.; Anslan, S.; Kasak, K.; Kõljalg, U.; Liira, J.; Maddison, M.; Moora, M.; et al. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nat. Commun. 2022, 13, 1430. [Google Scholar] [CrossRef]
- Castro-González, M.; Pacheco, M.; Restrepo, M. Bacterial communities in sediments of an urban wetland in Bogotá, Colombia. Univ. Sci. 2022, 27, 163–185. [Google Scholar] [CrossRef]
- López, R.H. Estado Trófico de un Humedal Urbano Andino Tropical: Santa María del Lago, Bogotá, D.C. Colombia; Periódicas S.A.S; Universidad Militar Nueva Granada: Bogotá, Colombia, 2012. [Google Scholar]
- Guillot, M.; Pinilla, G.A. Estudios Ecológicos en Humedales de Bogotá: Aplicaciones para su Evaluación, Seguimiento y Manejo; Editorial Universidad Nacional de Colombia: Bogotá, Colombia, 2017; p. 314. [Google Scholar]
- Yoshinari, T.; Knowles, R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun. 1976, 69, 705–710. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Weiss, R.; Price, B.A. Nitrous oxide solubility in water and seawater. Mar. Chem. 1980, 8, 347–359. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 1997, 63, 3233–3241. [Google Scholar] [CrossRef] [PubMed]
- Throbäck, I.N.; Enwall, K.; Jarvis, A.; Hallin, S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 2004, 49, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 5 September 2019).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, D.H.; Luo, R.; Liu, C.-M.; Leung, C.-M.; Ting, H.-F.; Sadakane, K.; Yamashita, H.; Lam, T.-W. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016, 102, 3–11. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2014, 12, 59–60. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Verbaendert, I.; Boon, N.; De Vos, P.; Heylen, K. Denitrification is a common feature among members of the genus Bacillus. Syst. Appl. Microbiol. 2011, 34, 385–391. [Google Scholar] [CrossRef]
- Yang, T.; Xin, Y.; Zhang, L.; Gu, Z.; Li, Y.; Ding, Z.; Shi, G. Characterization on the aerobic denitrification process of Bacillus strains. Biomass Bioenergy 2020, 140, 105677. [Google Scholar] [CrossRef]
- Cao, S.; Cheng, Z.; Koch, K.; Fang, J.; Du, R.; Peng, Y. Municipal wastewater driven partial- denitrification (PD) aggravated nitrous oxide production. J. Clean. Prod. 2024, 434, 139916. [Google Scholar] [CrossRef]
- Thakur, P.; Gauba, P. Identification and examination of nitrogen metabolic genes in Lelliottia amnigena PTJIIT1005 for their ability to perform nitrate remediation. BMC Genom. 2023, 24, 104. [Google Scholar] [CrossRef]
- Gao, H.; Mao, Y.; Zhao, X.; Liu, W.-T.; Zhang, T.; Wells, G. Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess. Water Res. 2019, 155, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Roco, C.A.; Bergaust, L.L.; Bakken, L.R.; Yavitt, J.B.; Shapleigh, J.P. Modularity of nitrogen-oxide reducing soil bacteria: Linking phenotype to genotype. Environ. Microbiol. 2017, 19, 2507–2519. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.J.; Simon, J.; Rowley, G.; Bedmar, E.J.; Richardson, D.J.; Gates, A.J.; Delgado, M.J. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms, chapter seven. Adv. Microb. Physiol. 2016, 68, 353–432. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.A.; Dalsgaard, T.; Revsbech, N.P.; Kuenen, J.G. Confirmation of aerobic denitrification’ in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol. Ecol. 1995, 18, 113–120. [Google Scholar] [CrossRef]
- Patureau, D.; Bernet, N.; Moletta, R. Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp. strain SGLY2. J. Indian Microbiol. 1995, 16, 124–128. [Google Scholar] [CrossRef]
- Scholten, E.; Lukow, T.; Auling, G.; Kroppenstedt, R.M.; Rainey, F.A.; Dielmann, H. Thaurea mecharnichensis sp. nov., an aerobic denitrifier from a leachate treatment Plant. Int. J. Syst. Bacteriol. 1999, 49, 1045–1051. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Z.; Qin, S.; Zhou, S.; Hu, C.; Clough, T.; Wrage-Mönnig, N.; Luo, J.; Conrad, R. Effects of nitrate and water content on acetylene inhibition technique bias when analyzing soil denitrification rates under an aerobic atmosphere. Geoderma 2019, 334, 33–36. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Beauchamp, E.G. Acetylene as a possible substrate in the denitrification process. Can. J. Soil Sci. 1982, 62, 137–144. [Google Scholar] [CrossRef]
- Terry, R.E.; Duxbury, J.M. Acetylene decomposition in soils. Soil Sci. Soc. Am. J. 1985, 49, 90–94. [Google Scholar] [CrossRef]
- Topp, E.; Germon, J.C. Acetylene metabolism and stimulation of denitrification in an agricultural soil. Appl. Environ. Microbiol. 1986, 52, 802–806. [Google Scholar] [CrossRef]
- Yu, K.; Seo, D.-C.h.; DeLaune, R.D. Incomplete acetylene inhibition of Nitrous Oxide reduction in potential denitrification assay as revealed by using 15N-Nitrate tracer. Commun. Soil Sci. Plant Anal. 2010, 41, 2201–2210. [Google Scholar] [CrossRef]
- Qin, S.; Hu, C.h.; Oenema, O. Quantifying the underestimation of soil denitrification potential as determined by the acetylene inhibition method. Soil Biol. Biochem. 2012, 47, 14–17. [Google Scholar] [CrossRef]
- Sun, Y.; De Vos, P.; Heylen, K. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis. BMC Genom. 2016, 17, 68. [Google Scholar] [CrossRef]
- Yoon, S.; Heo, H.; Han, H.; Song, D.; Bakken, L.R.; Frostegård, Å.; Yoon, S. Suggested role of NosZ in preventing N2O inhibition of dissimilatory nitrite reduction to ammonium. mBio 2023, 14, e01540-23. [Google Scholar] [CrossRef]
- Lucas, J.A.; García-Villaraco, A.; Ramos, B.; García-Cristobal, J.; Algar, E.; Gutierrez-Mañero, J. Structural and functional study in the rhizosphere of Oryza sativa L. plants growing under biotic and abiotic stress. J. Appl. Microbiol. 2013, 115, 218–235. [Google Scholar] [CrossRef]
- Yang, R.; Yuan, L.J.; Wang, R.; He, Z.; Chen, X. New insight on the regulation of N2O production in aerobic condition: An N2O metabolic perspective based on enzymatic analysis of nitrous oxide reductase. J. Water Process Eng. 2021, 41, 102090. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Gates, A.J.; Appia-Ayme, C.; Rowley, G.; Richardson, D.J. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism. Proc. Nat. Acad. Sci. USA 2013, 110, 19926–19931. [Google Scholar] [CrossRef] [PubMed]
- Gaimster, H.; Alston, M.; Richardson, D.J.; Gates, A.J.; Rowley, G. Transcriptional and environmental control of bacterial denitrification and N2O emissions. FEMS Microbiol. Lett. 2018, 365, fnx277. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Li, L.; Wang, M.; Tahvanainen, T.; Hashidoko, Y. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum. Biosci. Biotechnol. Biochem. 2015, 79, 2086–2095. [Google Scholar] [CrossRef]
- Saleh-Lakha, S.; Shannon, K.E.; Henderson, S.-L.; Zebarth, B.J.; Burton, D.L.; Goyer, C.; Trevors, J.T. Effect of nitrate and acetylene on nirS, cnorB, and nosZ expression and denitrification activity in Pseudomonas mandelii. Appl. Environ. Microbiol. 2009, 75, 5082–5087. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Graf, D.R.H.; Bru, D.; Philippot, L.; Hallin, S. The unaccounted yet abundant nitrous oxide- reducing microbial community: A potential nitrous oxide sink. ISME J. 2013, 7, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhuge, Y.; Liu, Y.; Shapleigh, J.; Li, W. Long-term effects of acetylene on denitrifying N2O production: Biomass performance and microbial community. J. Water Process Eng. 2021, 42, 102137. [Google Scholar] [CrossRef]
- Coyotzi, S.; Doxey, A.C.; Clark, I.D.; Lapen, D.R.; Van Cappellen, P.; Neufeld, J.D. Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity. Environ. Microbiol. 2017, 19, 1189–1208. [Google Scholar] [CrossRef]
- Zhenfeng, L.; Niels-Ulrik, F.; Kajetan, V.; Takao, I.; Moriya, O.; Joerg, O.; Donald, B. Complete Genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the Phylum Chlorobi. Front. Microbiol. 2012, 3, 185. [Google Scholar] [CrossRef]
- Oba, K.; Suenaga, T.; Yasuda, S.; Kuroiwa, M.; Hori, T.; Lackner, S.; Terada, A. Quest for Nitrous Oxide-reducing bacteria present in an Anammox biofilm fed with Nitrous Oxide. Microbes Environ. 2023, 39, ME23106. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, K.; Liu, Y.; Zhao, J.; Ma, J.; Yu, Q.; Zou, P.; Lin, H.; Wang, Q. Differential responses of soil nirS- and nirK-type denitrifying microbial communities to long-term application of biogas slurry in a paddy soil. Appl. Soil Ecol. 2023, 182, 104711. [Google Scholar] [CrossRef]
- Maheshwari, A.; Jones, C.M.; Tiemann, M.; Hallin, S. Carbon substrate selects for different lineages of N2O reducing communities in soils under anoxic conditions. Soil Biol. Biochem. 2023, 177, 108909. [Google Scholar] [CrossRef]
- Ishii, S.; Ashida, N.; Ohno, H.; Segawa, T.; Yabe, S.; Otsuka, S.; Yokota, A.; Senoo, K. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifing, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov. Int. J. Syst. Evol. Microbiol. 2017, 7, 1841–1848. [Google Scholar] [CrossRef]
- Han, P.; Wu, D.; Sun, D.; Zhao, M.; Wang, M.; Wen, T.; Zhang, J.; Hou, L.; Liu, M.; Klümper, U.; et al. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers. Water Res. 2021, 190, 116728. [Google Scholar] [CrossRef]
- Kits, K.D.; Jung, M.Y.; Vierheilig, J.; Pjevac, P.; Sedlacek, C.J.; Liu, S.; Herbold, C.; Stein, L.Y.; Richter, A.; Wissel, H.; et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat. Commun. 2019, 10, 1836. [Google Scholar] [CrossRef]
Strain | Microscopic Morphology and Gram Stain | Anoxic N2O Production (nM/h) | Presence of nosZ/nirS Gen | Taxonomic Identification |
---|---|---|---|---|
M43 | Gram+ bacillococci | 2707.8 ± 920.3 | x/x | Bacillus mojavensis strain MN29 |
M63 | Gram- bacillococci | 1632.2 ± 367.0 | −/x | |
M41 | Gram+ bacillococci | 3.1 ± 1.7 | x/x | |
M51 | Gram+ bacilli | 1487.6 ± 326.0 | x/x | |
M61 | Gram- bacilli | 186.9 ± 71.9 | −/x | |
M13 | Gram+ bacillococci | 3515.0 ± 444.6 | x/− | Bacillus sp. |
M21 | Gram+ bacillococci | 1180.5 ± 282.8 | −/x | |
M34 | Gram+ bacilli | 1631.0 ± 1436.0 | x/− | |
M53 | Gram+ bacillococci | 3717.0 ± 29.4 | x/− | Bacillus mojavensis strain MN29 |
M64 | Gram+ bacillococci | 3865.5 ± 379.5 | x/− | Bacillus pumilus strain 15.2 |
M31 * | Gram- bacillococci | 1.1 ± 0.3 | nd | Bacterium BaC1-35 |
4 * | Gram- bacillococci | 7.8 ± 0.8 | nd | Lelliottia amnigena strain Br-5 |
1 * | Gram- bacillococci | Not determined | nd | Lelliottia amnigena strain Br-5 |
2 * | Gram- bacilli | 0.9 ± 0.2 | nd | |
5 * | Gram- bacilli | 163.6 ± 103.0 | nd | Lelliottia amnigena strain Br-5 |
Nitrifier | Gram- bacilli | 0.0 ± 0.0 | −/− |
Scheme 31. | M31 | 4 | 1 | 2 | 5 | Nitrifier |
---|---|---|---|---|---|---|
Acetylene | 0.8 ± 0.2 | 20.7 ± 10.2 | −0.13 ± 0.04 | 0.2 ± 0.2 | 15.4 ± 2.2 | 0.01 ± 0.02 |
Air | 0.8 ± 0.1 | 9.6 ± 1.5 | 0.07 ± 0.05 | −0.2 ± 0.0 | 83.0 ± 59.7 | 0.02 ± 0.01 |
Strain | Ammonium | Nitrate | Nitrite |
---|---|---|---|
3.1 | 0.29 ± 0.18 | 4.55 ± 5.02 | 0.02 ± 0.01 |
1 | 0.004 ± 0.00 | 6.25 ± 0.35 | 0.09 ± 0.06 |
2 | 0.28 ± 0.10 | 4.30 ± 2.82 | 0.06 ± 0.04 |
4 | 0.08 ± 0.07 | 12.15 ± 2.61 | 0.02 ± 0.01 |
5 | 0.02 ± 0.01 | indetectable | 0.42 ± 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-González, M.; Molina, V. Generation of Nitrous Oxide by Aerobic Denitrifiers Isolated from an Urban Wetland in Bogotá, Colombia. Limnol. Rev. 2025, 25, 32. https://doi.org/10.3390/limnolrev25030032
Castro-González M, Molina V. Generation of Nitrous Oxide by Aerobic Denitrifiers Isolated from an Urban Wetland in Bogotá, Colombia. Limnological Review. 2025; 25(3):32. https://doi.org/10.3390/limnolrev25030032
Chicago/Turabian StyleCastro-González, Maribeb, and Verónica Molina. 2025. "Generation of Nitrous Oxide by Aerobic Denitrifiers Isolated from an Urban Wetland in Bogotá, Colombia" Limnological Review 25, no. 3: 32. https://doi.org/10.3390/limnolrev25030032
APA StyleCastro-González, M., & Molina, V. (2025). Generation of Nitrous Oxide by Aerobic Denitrifiers Isolated from an Urban Wetland in Bogotá, Colombia. Limnological Review, 25(3), 32. https://doi.org/10.3390/limnolrev25030032