Removal of Emerging Contaminants from Water by Using Carbon Materials Derived from Tingui Shells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Activated Biochar and Hydrochar
2.2. Textural and Chemical Characterizations of BT, BT-CO2, HT, and HT-CO2
2.3. Adsorbates
2.4. Batch Adsorption Experiments
2.4.1. Adsorption Kinetics
2.4.2. Adsorption Isotherms
2.5. Fixed Bed Column Adsorption Experiments
3. Results and Discussion
3.1. Physicochemical and Structural Properties of BT, BT-CO2, HT, and HT-CO2
3.2. Batch Adsorption Kinetics
3.3. Batch Adsorption Isotherm
3.4. Fixed Bed Column Adsorption Experiments
3.5. Adsorption Mechanism of Acetaminophen and Caffeine
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Graham, G.G.; Davies, M.J.; Day, R.O.; Mohamudally, A.; Scott, K.F. The Modern Pharmacology of Paracetamol: Therapeutic Actions, Mechanism of Action, Metabolism, Toxicity and Recent Pharmacological Findings. Inflammopharmacology 2013, 21, 201–232. [Google Scholar] [CrossRef] [PubMed]
- Starling-Soares, B.; Pereira, M.; Renke, G. Extrapolating the Coffee and Caffeine (1,3,7-Trimethylxanthine) Effects on Exercise and Metabolism—A Concise Review. Nutrients 2023, 15, 5031. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, J.F.; Sizirici, B.; Yildiz, I. Fate, Transport, and Risk Assessment of Widely Prescribed Pharmaceuticals in Terrestrial and Aquatic Systems: A Review. Emerg. Contam. 2022, 8, 216–228. [Google Scholar] [CrossRef]
- De Cravalho, A.C.C.; da Silva Paganini, W.; de Almeida Piai, K.; Bocchiglieri, M.M. The Presence of Pharmaceuticals and Caffeine in Water, as Well as the Methods Used to Eliminate Them. Curr. Opin. Environ. Sci. Health 2024, 39, 100550. [Google Scholar] [CrossRef]
- Quadra, G.R.; Oliveira de Souza, H.; Costa, R.d.S.; Fernandez, M.A.d.S. Do Pharmaceuticals Reach and Affect the Aquatic Ecosystems in Brazil? A Critical Review of Current Studies in a Developing Country. Environ. Sci. Pollut. Res. 2017, 24, 1200–1218. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Parde, D.; Bhaduri, S.; Rajpurohit, P.; Behera, M. Occurrence, Fate, Transport, and Removal Technologies of Emerging Contaminants: A Review on Recent Advances and Future Perspectives. Clean-Soil Air Water 2024, 52, 2300259. [Google Scholar] [CrossRef]
- Ullah, S.; Shah, S.S.A.; Altaf, M.; Hossain, I.; El Sayed, M.E.; Kallel, M.; El-Bahy, Z.M.; Rehman, A.U.; Najam, T.; Nazir, M.A. Activated Carbon Derived from Biomass for Wastewater Treatment: Synthesis, Application and Future Challenges. J. Anal. Appl. Pyrolysis 2024, 179, 106480. [Google Scholar] [CrossRef]
- Akintola, A.T.; Ayankunle, A.Y. Improving Pharmaceuticals Removal at Wastewater Treatment Plants Using Biochar: A Review. Waste Biomass Valorization 2023, 14, 2433–2458. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Maroulas, K.N.; Theologis, D.; Katsoyiannis, I.A.; Kyzas, G.Z. Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters. C-J. Carbon. Res. 2024, 10, 22. [Google Scholar] [CrossRef]
- Sharma, H.B.; Vanapalli, K.R.; Bhatia, D.; Singh, S.; Arora, G.; Panigrahi, S.; Dubey, B.K.; Ramamurthy, P.C.; Mohanty, B. Engineered Biochar/Hydrochar Derived from Organic Wastes for Energy, Environmental, and Agricultural Applications; Springer: Berlin/Heidelberg, Germany, 2024; ISBN 1009802402. [Google Scholar]
- Moraes, A.R.A.; Camargo, K.C.; Simões, M.O.M.; Ferraz, V.P.; Pereira, M.T.; Evangelista, F.C.G.; Sabino, A.P.; Duarte, L.P.; Alcântara, A.F.C.; de Sousa, G.F. Chemical Composition of Magonia pubescens Essential Oils and Gamma-Radiation Effects on Its Constituents and Cytotoxic Activity in Leukemia and Breast Cancer Model. Chem. Biodivers. 2021, 18, e2100094. [Google Scholar] [CrossRef]
- Moraes, A.R.A.; Sabina, S.R.; Expósito, D.G.; Giménez, C.; Espinel, G.; Sousa, G.F.; Duarte, L.P.; Jiménez, I.A.; Cabrera, R.; Bazzocchi, I.L. Evaluation of Magonia pubescens A. St.-Hill. Roots Extract against Phytopathogens: Searching for Eco-Friendly Crop Protection Products. Appl. Sci. 2023, 13, 6736. [Google Scholar] [CrossRef]
- Moraes, A.R.A.; Siqueira, E.P.; Kohlhoff, M.; Evangelista, F.C.G.; Sabino, A.P.; Vieira Filho, S.A.; Alcântara, A.F.C.; Duarte, L.P.; Sousa, G.F. Phytochemical Study of Magonia pubescens A. St.-Hil. and Cytotoxicity of Branches Aqueous Extract on Breast Cancer and Leukemia Cells. Nat. Prod. Res. 2024, 38, 1956–1960. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.F.; Moreira, W.M.; de Araújo, T.P.; Bernardo, M.M.S.; de Figueiredo Ligeiro da Fonseca, I.M.; Ostroski, I.C.; de Barros, M.A.S.D. Competitive Adsorption of Acetaminophen and Caffeine onto Activated Tingui Biochar: Characterization, Modeling, and Mechanisms. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Federici dos Santos, D.; Moreira, W.M.; de Araújo, T.P.; Martins, D.C.C.; Carvalho da Silva Fonseca, B.; Ostroski, I.C.; de Barros, M.A.S.D. Novel Activated Carbon from Magonia pubescens Bark: Characterization and Evaluation of Adsorption Efficiency. Environ. Technol. 2023. [Google Scholar] [CrossRef] [PubMed]
- EN 15290:2011; Air Quality—Determination of Major and Trace Elements in Ambient Air—Inductively Coupled Plasma Mass Spectrometric (ICP-MS) Method. European Committee for Standardization (CEN): Brussels, Belgium, 2011.
- Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef]
- Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.H.; Indraswati, N.; Ismadji, S. Equilibrium and Kinetic Studies in Adsorption of Heavy Metals Using Biosorbent: A Summary of Recent Studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Schiewer, S. Biosorption of Cadmium(II) Ions by Citrus Peels in a Packed Bed Column: Effect of Process Parameters and Comparison of Different Breakthrough Curve Models. CLEAN–Soil Air Water 2011, 39, 874–881. [Google Scholar] [CrossRef]
- Yan, S.; Qu, J.; Bi, F.; Wei, S.; Wang, S.; Jiang, Z.; Wang, L.; Yu, H.; Zhang, Y. One-Pot Synthesis of Porous N-Doped Hydrochar for Atrazine Removal from Aqueous Phase: Co-Activation and Adsorption Mechanisms. Bioresour. Technol. 2022, 364, 128056. [Google Scholar] [CrossRef] [PubMed]
- Vandeponseele, A.; Draye, M.; Piot, C.; Chatel, G. Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions. Clean. Technol. 2021, 3, 335–350. [Google Scholar] [CrossRef]
- Bursztyn Fuentes, A.L.; Benito, D.E.; Montes, M.L.; Scian, A.N.; Lombardi, M.B. Paracetamol and Ibuprofen Removal from Aqueous Phase Using a Ceramic-Derived Activated Carbon. Arab. J. Sci. Eng. 2023, 48, 525–537. [Google Scholar] [CrossRef]
- Álvarez-Murillo, A.; Ledesma, B.; Román, S.; Sabio, E.; Gañán, J. Biomass Pyrolysis toward Hydrocarbonization. Influence on Subsequent Steam Gasification Processes. J. Anal. Appl. Pyrolysis 2015, 113, 380–389. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wang, J.; Zhao, X.; Zhao, Y.; Qian, J.; Wang, T. Pyrolysis and Hydrothermal Carbonization of Biowaste: A Comparative Review on the Conversion Pathways and Potential Applications of Char Product. Sustain. Chem. Pharm. 2023, 33, 101106. [Google Scholar] [CrossRef]
- Silva, J.O.S.; Granja, H.S.; dos Santos, J.F.; Freitas, L.S.; Sussuchi, E.M. Biochar and Hydrochar in the Development and Application of Electrochemical Devices in the Sensing and Degradation of Target Compounds: A Mini-Review of the Recent Contributions of 2020–2023. J. Braz. Chem. Soc. 2024, 35, 1–18. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. IUPAC Technical Report Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Kinashi, K.; Kambe, Y.; Misaki, M.; Koshiba, Y.; Ishida, K.; Ueda, Y. Synthesis, Characterization, Photo-Induced Alignment, and Surface Orientation of Poly(9,9-Dioctylfluorene-Alt-Azobenzene)S. J. Polym. Sci. Part. A Polym. Chem. 2012, 50, 5107–5114. [Google Scholar] [CrossRef]
- Tian, X.-L.; Yu, J.-H.; Qiu, L.; Zhu, Y.-H.; Zhu, M.-Q. Structural Changes and Electrochemical Properties of Mesoporous Activated Carbon Derived from Eucommia Ulmoides Wood Tar by KOH Activation for Supercapacitor Applications. Ind. Crops Prod. 2023, 197, 116628. [Google Scholar] [CrossRef]
- Karakehya, N. Effects of One-Step and Two-Step KOH Activation Method on the Properties and Supercapacitor Performance of Highly Porous Activated Carbons Prepared from Lycopodium clavatum Spores. Diam. Relat. Mater. 2023, 135, 109873. [Google Scholar] [CrossRef]
- Aziz, S.; Uzair, B.; Ali, M.I.; Anbreen, S.; Umber, F.; Khalid, M.; Aljabali, A.A.; Mishra, Y.; Mishra, V.; Serrano-Aroca, Á.; et al. Synthesis and characterization of nanobiochar from rice husk biochar for the removal of safranin and malachite green from water. Environ. Res. 2023, 238, 116909. [Google Scholar] [CrossRef]
- Hamissou, I.G.M.; Appiah, K.E.K.; Sylvie, K.A.T.; Ousmaila, S.M.; Casimir, B.Y.; Benjamin, Y.K. Valorization of Cassava Peelings into Biochar: Physical and Chemical Characterizations of Biochar Prepared for Agricultural Purposes. Sci. Afr. 2023, 20, e01737. [Google Scholar] [CrossRef]
- Dos Reis, G.S.; Guy, M.; Mathieu, M.; Jebrane, M.; Lima, E.C.; Thyrel, M.; Dotto, G.L.; Larsson, S.H. A Comparative Study of Chemical Treatment by MgCl2, ZnSO4, ZnCl2, and KOH on Physicochemical Properties and Acetaminophen Adsorption Performance of Biobased Porous Materials from Tree Bark Residues. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128626. [Google Scholar] [CrossRef]
- Machado, T.S.; Crestani, L.; Marchezi, G.; Melara, F.; de Mello, J.R.; Dotto, G.L.; Piccin, J.S. Synthesis of Glutaraldehyde-Modified Silica/Chitosan Composites for the Removal of Water-Soluble Diclofenac Sodium. Carbohydr. Polym. 2022, 277, 118868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; She, Y.; Li, Y.; Cheng, H.; Ji, R.; Bian, Y.; Han, J.; Jiang, X.; Song, Y.; et al. Comparison of the Performance of Hydrochar, Raw Biomass, and Pyrochar as Precursors to Prepare Porous Biochar for the Efficient Sorption of Phthalate Esters. Sci. Total Environ. 2022, 846, 157511. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Almeida, W.; Itokazu, A.G.; Bazani, H.A.G.; Maraschin, M.; Rodrigues, O.H.C.; Corrêa, R.G.; Lopes, S.; Almerindo, G.I.; Moresco, R. Beach-Cast Sargassum cymosum Macroalgae: Biochar Production and Apply to Adsorption of Acetaminophen in Batch and Fixed-Bed Adsorption Processes. Environ. Technol. 2023, 44, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.F.; Moreno-Aldana, L.C.; Agámez-Pertuz, Y.Y. Adsorption of Pharmaceutical Pollutants on ZnCl2-Activated Biochar from Corn Cob: Efficiency, Selectivity and Mechanism. J. Bioresour. Bioprod. 2023, 9, 58–73. [Google Scholar] [CrossRef]
- Țurcanu, A.A.; Matei, E.; Râpă, M.; Predescu, A.M.; Berbecaru, A.C.; Coman, G.; Predescu, C. Walnut Shell Biowaste Valorization via HTC Process for the Removal of Some Emerging Pharmaceutical Pollutants from Aqueous Solutions. Int. J. Mol. Sci. 2022, 23, 11095. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Pittman, C.U.; Mohan, D. Ciprofloxacin and Acetaminophen Sorption onto Banana Peel Biochars: Environmental and Process Parameter Influences. Environ. Res. 2021, 201, 111218. [Google Scholar] [CrossRef]
- De Araújo, T.P.; Quesada, H.B.; Bergamasco, R.; Vareschini, D.T.; de Barros, M.A.S.D. Activated Hydrochar Produced from Brewer’s Spent Grain and Its Application in the Removal of Acetaminophen. Bioresour. Technol. 2020, 310, 123399. [Google Scholar] [CrossRef]
- Oginni, O.; Singh, K. Effect of Carbonization Temperature on Fuel and Caffeine Adsorption Characteristics of White Pine and Norway Spruce Needle Derived Biochars. Ind. Crops Prod. 2021, 162, 113261. [Google Scholar] [CrossRef]
- Danish, M.; Birnbach, J.; Mohamad Ibrahim, M.N.; Hashim, R.; Majeed, S.; Tay, G.S.; Sapawe, N. Optimization Study of Caffeine Adsorption onto Large Surface Area Wood Activated Carbon through Central Composite Design Approach. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100594. [Google Scholar] [CrossRef]
- Zanella, H.G.; Spessato, L.; Lopes, G.K.P.; Yokoyama, J.T.C.; Silva, M.C.; Souza, P.S.C.; Ronix, A.; Cazetta, A.L.; Almeida, V.C. Caffeine Adsorption on Activated Biochar Derived from Macrophytes (Eichornia crassipes). J. Mol. Liq. 2021, 340, 117206. [Google Scholar] [CrossRef]
- De Araujo, C.M.B.; Wernke, G.; Ghislandi, M.G.; Diório, A.; Vieira, M.F.; Bergamasco, R.; Alves da Motta Sobrinho, M.; Rodrigues, A.E. Continuous Removal of Pharmaceutical Drug Chloroquine and Safranin-O Dye from Water Using Agar-Graphene Oxide Hydrogel: Selective Adsorption in Batch and Fixed-Bed Experiments. Environ. Res. 2023, 216, 114425. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, C.M.B.; Ghislandi, M.G.; Rios, A.G.; da Costa, G.R.B.; do Nascimento, B.F.; Ferreira, A.F.P.; da Motta Sobrinho, M.A.; Rodrigues, A.E. Wastewater Treatment Using Recyclable Agar-Graphene Oxide Biocomposite Hydrogel in Batch and Fixed-Bed Adsorption Column: Bench Experiments and Modeling for the Selective Removal of Organics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 639, 128357. [Google Scholar] [CrossRef]
- Silveira Neto, A.L.; Pimentel-Almeida, W.; Niero, G.; Wanderlind, E.H.; Radetski, C.M.; Almerindo, G.I. Application of a Biochar Produced from Malt Bagasse as a Residue of Brewery Industry in Fixed-Bed Column Adsorption of Paracetamol. Chem. Eng. Res. Des. 2023, 194, 779–786. [Google Scholar] [CrossRef]
- Tejedor, J.; Álvarez-Briceño, R.; Guerrero, V.H.; Villamar-Ayala, C.A. Removal of Caffeine Using Agro-Industrial Residues in Fixed-Bed Columns: Improving the Adsorption Capacity and Efficiency by Selecting Adequate Physical and Operational Parameters. J. Water Process Eng. 2023, 53, 103778. [Google Scholar] [CrossRef]
- Pauletto, P.S.; Lütke, S.F.; Dotto, G.L.; Salau, N.P.G. Adsorption Mechanisms of Single and Simultaneous Removal of Pharmaceutical Compounds onto Activated Carbon: Isotherm and Thermodynamic Modeling. J. Mol. Liq. 2021, 336, 116203. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Thi Hoang Ha, N.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.T.; Masindi, V.; Woo, S.H. Innovative Spherical Biochar for Pharmaceutical Removal from Water: Insight into Adsorption Mechanism. J. Hazard. Mater. 2020, 394, 122255. [Google Scholar] [CrossRef]
- Islam, A.; Nazal, M.K.; Sajid, M.; Suliman, M.A. Adsorptive Removal of Paracetamol from Aqueous Media: A Review of Adsorbent Materials, Adsorption Mechanisms, Advancements, and Future Perspectives. J. Mol. Liq. 2024, 396, 123976. [Google Scholar] [CrossRef]
- Geczo, A.; Giannakoudakis, D.A.; Triantafyllidis, K.; Elshaer, M.R.; Rodríguez-Aguado, E.; Bashkova, S. Mechanistic Insights into Acetaminophen Removal on Cashew Nut Shell Biomass-Derived Activated Carbons. Environ. Sci. Pollut. Res. 2021, 28, 58969–58982. [Google Scholar] [CrossRef]
- El Saied, M.; Seham, S.A.; Shaban, A.; Mohsen, M.S.; Mostafa, S.; Abo, A.O.; Naga, E. Efficient Adsorption of Acetaminophen from the Aqueous Phase Using Low-Cost and Renewable Adsorbent Derived from Orange Peels. Biomass Convers. Biorefinery 2022, 14, 2155–2172. [Google Scholar] [CrossRef]
- Francoeur, M.; Ferino-Pérez, A.; Yacou, C.; Jean-Marius, C.; Emmanuel, E.; Chérémond, Y.; Jauregui-Haza, U.; Gaspard, S. Activated Carbon Synthetized from Sargassum (Sp) for Adsorption of Caffeine: Understanding the Adsorption Mechanism Using Molecular Modeling. J. Environ. Chem. Eng. 2021, 9, 104795. [Google Scholar] [CrossRef]
- Bachmann, S.A.L.; Calvete, T.; Féris, L.A. Caffeine Removal from Aqueous Media by Adsorption: An Overview of Adsorbents Evolution and the Kinetic, Equilibrium and Thermodynamic Studies. Sci. Total Environ. 2021, 767, 144229. [Google Scholar] [CrossRef] [PubMed]
Properties | Acetaminophen | Caffeine |
---|---|---|
Chemical formula | C8H9NO2 | C8H10N4O2 |
pKA | 9.5 | 14.0 |
Molar mass | 151.17 g mol−1 | 194.19 g mol−1 |
Chemical structure |
Characteristics | BT | BT-CO2 | HT | HT-CO2 |
---|---|---|---|---|
Nitrogen adsorption | ||||
SBET (m2 g−1) | <5.0 | 239.0 | 30.0 | 485.0 |
VP (cm3 g−1) | n.d | 0.090 | 0.091 | 0.214 |
Vmicrop (cm3 g−1) | n.d | 0.085 | 0.001 | 0.168 |
Vmesop (cm3 g−1) | n.d | 0.005 | 0.090 | 0.046 |
Elemental analysis | ||||
C (w/w %) | 71.93 | 81.21 | 63.22 | 79.12 |
H (w/w %) | 2.19 | 0.60 | 4.44 | 1.21 |
N (w/w %) | 1.84 | 0.99 | 1.97 | 1.64 |
S (w/w %) | 0.00 | 0.00 | 0.00 | 0.00 |
O (w/w %) a | 18.81 | 14.10 | 30.37 | 16.94 |
H/C | 0.030 | 0.007 | 0.070 | 0.015 |
O/C | 0.334 | 0.211 | 0.480 | 0.229 |
Ashes (w/w %) | ||||
Ash | 5.23 | 3.10 | ≤1.00 | 1.09 |
Zero charge point analysis | ||||
pHPCZ | 5.68 | 5.88 | 6.98 | 7.07 |
Model | Parameter | Acetaminophen | Caffeine | ||
---|---|---|---|---|---|
BT-CO2 | HT-CO2 | BT-CO2 | HT-CO2 | ||
PFO | qe (mg g−1) | 51.71 | 86.55 | 31.51 | 59.60 |
k1 (min−1) | 0.195 | 0.324 | 0.346 | 0.276 | |
R2 | 0.796 | 0.915 | 0.969 | 0.934 | |
PSO | qe (mg g−1) | 54.41 | 89.06 | 32.13 | 61.36 |
k2 (min−1) | 4.08 × 10−3 | 5.76 × 10−3 | 0.0220 | 7.24 × 10−3 | |
R2 | 0.882 | 0.952 | 0.988 | 0.973 | |
Elovich | α (mg g−1 min−1) | 2503.6 | 7417.6 | 18237.3 | 98117.6 |
β (mg g−1) | 0.236 | 0.232 | 0.933 | 0.351 | |
R2 | 0.990 | 0.997 | 0.997 | 0.992 |
Model | Parameter | Acetaminophen | Caffeine | ||
---|---|---|---|---|---|
BT-CO2 | HT-CO2 | BT-CO2 | HT-CO2 | ||
Langmuir | qmax (mg g−1) | 240.86 | 2822.23 | 168.68 | 185.22 |
KL (L mg−1) | 2.14 × 10−3 | 1.60 × 10−4 | 2.27 × 10−3 | 0.0127 | |
R2 | 0.983 | 0.739 | 0.988 | 0.978 | |
Freundlich | KF (mg g−1)/(L mg−1)1/n | 4.61 | 4.28 | 3.34 | 22.30 |
n | 1.68 | 1.59 | 1.68 | 3.30 | |
R2 | 0.974 | 0.787 | 0.965 | 0.965 | |
BET | qm (mg g−1) | 86.30 | 88.57 | 65.04 | 88.67 |
Ks (L mg−1) | 6.63 × 1043 | 8.08 | 3.10 × 1045 | 1.62 × 1043 | |
KL (L mg−1) | 8.50 × 10−4 | 9.5 × 10−4 | 8.00 × 10−4 | 6.3 × 10−4 | |
R2 | 0.755 | 0.970 | 0.729 | 0.771 |
Adsorbent | Experimental Conditions | qm, experimental (mg g−1) | Reference | ||||
---|---|---|---|---|---|---|---|
T (°C) | Mass (mg) | Time (min) | Cinitial (mg L−1) | Contaminant | |||
Corn cob biochar | - | 1000 | 360 | 0–500 | Acetaminophen | 64.9 | [37] |
Walnut shell | - | 100 | 120 | 5–80 | Acetaminophen | 15.3 | [38] |
Biobased carbon material activated with ZnSO4. | 23 | 30 | 2 | 70–1200 | Acetaminophen | 364.8 | [33] |
Biobased carbon material activated with MgCl2. | 23 | 30 | 4 | 70–1200 | Acetaminophen | 321.2 | [33] |
Banana peel | 45 | 2000 | 1500 | 0–200 | Acetaminophen | 57.3 | [39] |
Brewer’s spent grain | 30 | 25 | 60 | 100–1000 | Acetaminophen | 318.0 | [40] |
Norway spruce (Picea abies) needles | 25 | 10 | 300 | 10–40 | Caffeine | 9.2 | [40] |
Pine (Pinus strobus) needles | 25 | 10 | 300 | 10–40 | Caffeine | 11.9 | [41] |
Mangium acacia wood | 25 | 3000 | 61 | 0–100 | Caffeine | 29.2 | [42] |
Macrophyte (Eichornia crassipes) | 25 | 25 | 50 | 25–500 | Caffeine | 112.7 | [43] |
BT-CO2 | 25 | 20 | 1440 | 25–1000 | Acetaminophen | 383.2 | This work |
BT-CO2 | 25 | 20 | 1440 | 25–1000 | Caffeine | 189.7 | This work |
Model | Parameter | Acetaminophen | Caffeine |
m = 0.2 g | m = 0.2 g | ||
Q = 3mL min−1 | Q = 3 mL min−1 | ||
Co = 25 mg L−1 | Co = 25 mg L−1 | ||
Z = 2.1 cm | Z = 2.1 cm | ||
tr (Ct/C0 = 0.05) = 70.2 min | tr (Ct/C0 = 0.05) = 5.6 min | ||
ts (Ct/C0 = 0.94) = 491.6 min | ts (Ct/C0 = 0.94) = 415.9 min | ||
ZTM = 1.80 cm | ZTM = 2.1 cm | ||
Veflu = 1474.8 mL | Veflu = 1247.7 mL | ||
mDIC_total = 36.87 mg | mDIC_total = 31.2 mg | ||
mDIC_ads = 16.44 mg | mDIC_ads = 9.1 mg | ||
qtotal = 82.23 mg g−1 | qtotal = 45.6 mg g−1 | ||
%R = 44.6% | %R = 20.0% | ||
Thomas | kTh (L mg−1 min−1) | 5.9 × 10−4 | 6.6 × 10−4 |
qo (mg g−1) | 79.7 | 36.7 | |
R2 | 0.986 | 0.952 | |
Adams–Bohart | kAB (L mg−1 min−1) | 5.90 × 10−4 | 6.6 × 10−4 |
No (mg L−1) | 54889.0 | 27731.6 | |
R2 | 0.986 | 0.952 | |
Yoon–Nelson | kYN (min−1) | 0.0146 | 0.0165 |
τcal (min) | 212.5 | 97.8 | |
R2 | 0.986 | 0.952 | |
Dose–response | α | 2.80 | 1.56 |
qo (mg g−1) | 75.0 | 30.8 | |
R2 | 0.997 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, D.; Moreira, W.; de Araújo, T.; Bernardo, M.; Fonseca, I.; Ostroski, I.; de Barros, M.A. Removal of Emerging Contaminants from Water by Using Carbon Materials Derived from Tingui Shells. Separations 2024, 11, 215. https://doi.org/10.3390/separations11070215
dos Santos D, Moreira W, de Araújo T, Bernardo M, Fonseca I, Ostroski I, de Barros MA. Removal of Emerging Contaminants from Water by Using Carbon Materials Derived from Tingui Shells. Separations. 2024; 11(7):215. https://doi.org/10.3390/separations11070215
Chicago/Turabian Styledos Santos, Débora, Wardleison Moreira, Thiago de Araújo, Maria Bernardo, Isabel Fonseca, Indianara Ostroski, and Maria Angélica de Barros. 2024. "Removal of Emerging Contaminants from Water by Using Carbon Materials Derived from Tingui Shells" Separations 11, no. 7: 215. https://doi.org/10.3390/separations11070215
APA Styledos Santos, D., Moreira, W., de Araújo, T., Bernardo, M., Fonseca, I., Ostroski, I., & de Barros, M. A. (2024). Removal of Emerging Contaminants from Water by Using Carbon Materials Derived from Tingui Shells. Separations, 11(7), 215. https://doi.org/10.3390/separations11070215