The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters
Abstract
1. Introduction
2. Materials and Methods
2.1. Racemic Mixtures
2.2. Chiral HPLC Separation
3. Results
3.1. ReproSil Chiral MIG Column, ACN:H2O Solvent System
3.2. ReproSil Chiral MIC Column, ACN:H2O Solvent System
3.3. Both Columns, HEX:IPA Solvent System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohij, T.; Ohnishi, A.; Ogasawara, M. Application of Polysaccharide-Based Chiral High-Performance Liquid Chromatography Columns for the Separation of Regio E/Z− and Enantio-Isomeric Mixtures of Allylic Compounds. ACS Omega 2022, 7, 5146–5153. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, M.; Enomoto, Y.; Uryu, M.; Yang, X.; Kataoka, A.; Ohnishi, A. Application of Polysaccharide-Based Chiral HPLC Columns for Separation of Nonenantiomeric Isomeric Mixtures of Organometallic Compounds. Organometallics 2019, 38, 512–518. [Google Scholar] [CrossRef]
- Nemeti, G.; Berkecz, R.; Shahmohammadi, S.; Forró, E.; Lindner, W.; Péter, A.; Ilisz, I. Enantioselective high-performance liquid chromatographic separation of fluorinated ß-phenylalanine derivatives utilizing Cinchona alkaloid-based ion-exchanger chiral stationary phases: Enantioselective separation of fluorinated ß-phenylalanine derivatives. J. Chromatogr. A 2022, 1670, 462974. [Google Scholar] [CrossRef] [PubMed]
- Sardella, R.; Ianni, F.; Lisanti, A.; Marinozzi, M.; Scorzoni, S.; Natalini, B. The effect of mobile phase composition in the enantioseparation of pharmaceutically relevant compounds with polysaccharide-based stationary phases. Biomed Chromatogr. 2014, 28, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Francotte, E.R. Enantioselective Chromatography as a Powerful Alternative for the Preparation of Drug Enantiomers. J. Chromatogr. A 2001, 906, 379–397. [Google Scholar] [CrossRef]
- Santos, R.; Pontes, K.V.; Nogueira, I.B.R. Enantiomers and Their Resolution. Encyclopedia 2022, 2, 151–188. [Google Scholar] [CrossRef]
- Clark, A.; Kitson, R.R.A.; Mistry, N.; Taylor, P.; Taylor, M.; Lloyd, M.; Akamune, C. Introduction to Stereochemistry, 1st ed.; Royal Society of Chemistry: Cambridge, UK, 2021; pp. 41–52. [Google Scholar]
- Liu, X. Organic Chemistry I; Kwantlen Polytechnic University: Surrey, BC, Canada, 2021; pp. 161–169. [Google Scholar]
- Maier, N.; Pilar, F.; Lindner, W. Separation of Enantiomers: Needs, Challenges, Perspectives. J. Chromatogr. A 2001, 906, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Waugh, J.; Keating, G.M.; Plosker, G.L.; Easthope, S.; Robinson, D.M. Pioglitazone: A review of its use in type 2 diabetes mellitus. Drugs 2006, 66, 85–109. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.; Tiritan, M.E.; Pinto, M.M.M.; Fernandes, C. Chiral Stationary Phases for Liquid Chromatography: Recent Developments. Molecules 2019, 24, 865. [Google Scholar] [CrossRef]
- Śliwka-Kaszyńska, M.; Momotko, M.; Szarmańska, J.; Boczkaj, G.; Kamiński, M. Review of the types of chiral stationary phases and the possibilities of their applications in liquid chromatography. Cam. Sep. 2015, 7, 99–128. [Google Scholar]
- Fanali, C.; D’Orazio, G.; Fanali, S. Chiral Separations Using Nano-Liquid Chromatography. Sci. Chromatogr. 2016, 8, 161–169. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kawashima, M.; Hatada, K. Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: Phenylcarbamates of polysaccharides coated on silica gel. J. Am. Chem. Soc. 1984, 106, 5357–5359. [Google Scholar] [CrossRef]
- Park, J.H.; Whang, Y.C.; Jung, Y.J.; Okamoto, Y.; Yamamoto, C.; Carr, P.W.; McNeff, C.V. Separation of racemic compounds on amylose and cellulose dimethylphenylcarbamate-coated zirconia in HPLC. J. Sep. Sci. 2003, 26, 1331–1336. [Google Scholar] [CrossRef]
- Ali, I.; Aboul-Enein, H.Y. Immobilized Polysaccharide CSPs: An Advancement in Enantiomeric Separations. Curr. Pharm. Anal. 2007, 3, 71–82. [Google Scholar] [CrossRef]
- Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y. Immobilized Polysaccharide-Based Chiral Stationary Phases for HPLC. Polym. J. 2006, 38, 91–108. [Google Scholar] [CrossRef]
- Khatiashvili, T.; Matarashvili, I.; Karchkhadze, M.; Farkas, T.; Chankvetadze, B. Comparative Study of Cellulose Tris(3-chloro-5-methylphenylcarbamate) Coated or Covalently Immobilized on Silica for the Separation of Enantiomers in High-Performance Liquid Chromatography. Chromatographia 2024, 87, 27–34. [Google Scholar] [CrossRef]
- Kažoka, H.; Turovska, B.; Upmanis, T. Separation of 4-substituted 5-methylpiracetam stereoisomers on polysaccharide-based chiral stationary phases. J. Chromatogr. Open 2024, 5, 100122. [Google Scholar] [CrossRef]
- Jurin, M.; Kontrec, D.; Roje, M. HPLC and SFC Enantioseparation of (±)-Trans-β-Lactam Ureas on Immobilized Polysaccharide-Based Chiral Stationary Phases—The Introduction of Dimethyl Carbonate as an Organic Modifier in SFC. Separations 2024, 11, 38. [Google Scholar] [CrossRef]
- Toribio, L.; Magdaleno, I.; Martín-Gómez, B.; Martín, M.T.; Valverde, S.; Ares, A.M. Study of Different Chiral Columns for the Enantiomeric Separation of Azoles Using Supercritical Fluid Chromatography. Separations 2023, 10, 9. [Google Scholar] [CrossRef]
- Jurin, M.; Kontrec, D.; Dražić, T.; Roje, M. Enantioseparation of syn- and anti-3,5-Disubstituted Hydantoins by HPLC and SFC on Immobilized Polysaccharides-Based Chiral Stationary Phases. Separations 2022, 9, 157. [Google Scholar] [CrossRef]
- Ibrahim, D.; Ghanem, A. On the Enantioselective HPLC Separation Ability of Sub-2 µm Columns: Chiralpak IG-U and ID-U. Molecules 2019, 24, 1287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, B.; Bhadury, P.S.; Hu, D.; Yang, S.; Shi, X.; Liu, D.; Jin, L. Analytical and semi-preparative enantioseparation of organic phosphonates on a new immobilized amylose based chiral stationary phase. J. Sep. Sci. 2008, 31, 2946–2952. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, M.; Vaňkátová, P.; Kubíčková, A.; Kalíková, K. Synthesis, characterisation and supercritical fluid chromatography enantioseparation of new liquid crystalline materials. Liq. Cryst. 2020, 47, 1832–1843. [Google Scholar] [CrossRef]
- Vojtylová-Jurkovičová, T.; Vaňkátová, P.; Urbańska, M.; Hamplová, V.; Sýkora, D.; Bubnov, A. Effective control of optical purity by chiral HPLC separation for ester-based liquid crystalline materials forming anticlinic smectic phases. Liq. Cryst. 2008, 48, 43–53. [Google Scholar] [CrossRef]
- Urbańska, M. Separation of liquid crystalline racemic mixtures obtained on the basis of (R,S)-2-hexanol on amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilised on silica in high-performance liquid chromatography. Liq. Cryst. 2023, 50, 1893–1901. [Google Scholar] [CrossRef]
- Vojtylová, T.; Kašpar, M.; Hamplová, V.; Novotná, V.; Sýkora, D. Chiral HPLC for a study of the optical purity of new liquid crystalline materials derived from lactic acid. Phase Transit. 2014, 87, 758–769. [Google Scholar] [CrossRef]
- Vaňkátová, P.; Kalíková, K.; Kubíčková, A. Advantages of polar organic solvent chromatography for enantioseparation of chiral liquid crystals. J. Chromatogr. A 2023, 1709, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, M. Optimization of Liquid Crystalline Mixtures Enantioseparation on Polysaccharide-Based Chiral Stationary Phases by Reversed-Phase Chiral Liquid Chromatography. Int. J. Mol. Sci. 2024, 25, 6477. [Google Scholar] [CrossRef]
- Vojtylová, T.; Niezgoda, I.; Galewski, Z.; Hamplová, V.; Sýkora, D. A new approach to the chiral separation of novel diazenes. J. Sep. Sci. 2015, 38, 4211–4215. [Google Scholar] [CrossRef]
- Vojtylová, T.; Hamplová, V.; Galewski, Z.; Korbecka, I.; Sýkora, D. Chiral separation of novel diazenes on a polysaccharide-based stationary phase in the reversed-phase mode. J. Sep. Sci. 2017, 40, 1465–1469. [Google Scholar] [CrossRef]
- Gąsowska, J.; Dąbrowski, R.; Drzewiński, W.; Filipowicz, M.; Przedmojski, J.; Kenig, K. Comparison of Mesomorphic Properties in Chiral and Achiral Homologous Series of High Tilted Ferroelectrics and Antiferroelectrics. Ferroelectrics 2004, 309, 83–93. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Gąsowska, J.; Filipowicz, M.; Przedmojski, J.; Tykarska, M.; Otón, J.M.; Castillo, P.L.; Bennis, N. Comparison of phase situation in recently prepared chiral, racemic and achiral anticlinic high tilted compounds. Phase Trans. 2005, 78, 927–942. [Google Scholar] [CrossRef]
- Gąsowska, J.; Dziaduszek, J.; Drzewiński, W.; Filipowicz, M.; Dąbrowski, R.; Przedmojski, J.; Kenig, K. Influence of rigid core structure on layer tilt and mesomorphic properties in homologous series of three ring antiferroelectric esters. Proc. SPIE 2004, 5565, 72–78. [Google Scholar]
- Dąbrowski, R.; Gąsowska, J.; Otón, J.M.; Piecek, W.; Przedmojski, J.; Tykarska, M. High tilted antiferroelectric liquid crystalline materials. Displays 2004, 25, 9–19. [Google Scholar] [CrossRef]
- Ravisankar, P.; Anusha, S.; Supriya, K.; Kumar, U.A. Fundamental Chromatographic Parameters. Inter. J. Pharm. Sci. Rev. Res. 2019, 55, 46–50. [Google Scholar]
- Tang, S.; Jin, Z.; Sun, B.; Wang, F.; Tang, W. Preparation and evaluation of regioselectively substituted amylose derivatives for chiral separations. Chirality 2017, 29, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ikai, T.; Okamoto, Y. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J. Chromatogr. A 2014, 1363, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Pelusoa, P.; Mashiko, V.; Aubert, E.; Cossu, S. High-performance liquid chromatography enantioseparation of atropisomeric 4,4′-bipyridines on polysaccharide-type chiral stationary phases: Impact of substituents and electronic properties. J. Chromatogr. A. 2012, 1251, 91–100. [Google Scholar] [CrossRef]
- Majors, R.E. Developments in preparative-scale chromatography: Columns and accessories. LC-GC Eur. 2004, 17, 630–638. [Google Scholar]
- Speybrouck, D.; Lipka, E. Preparative supercritical fluid chromatography: A powerful tool for chiral separations. J. Chromatogr. A 2016, 1467, 33–55. [Google Scholar] [CrossRef]
Acronym | [M − H]− | Acronym | [M + Na]+ |
---|---|---|---|
CH3BiPh (R,S) | 587 | CH3PhBi (R,S) | 611 |
C2H5BiPh (R,S) | 601 | C2H5PhBi (R,S) | 625 |
C4H9BiPh (R,S) | 630 | C4H9PhBi (R,S) | 653 |
C7H15BiPh (R,S) | 671 | C7H15PhBi (R,S) | 696 |
C2F5BiPh (R,S) | 691 | C4F9PhBi (R,S) | 816 |
C4F9BiPh (R,S) | 791 | C5F11PhBi (R,S) | 866 |
C7F15BiPh (R,S) | 942 | C7F15PhBi (R,S) | 965 |
ReproSil Chiral MIC | ReproSil Chiral MIG |
No. | Mobile Phase [v/v] | Injection Volume [µL] | Flow Rate [mL/min] | |
---|---|---|---|---|
ACN | H2O | |||
1 | 99 | 1 | 15–20 | 1 |
2 | 95 | 5 | ||
3 | 90 | 10 | ||
HEX | IPA | 10–20 | 1 | |
4 | 85 | 15 | ||
5 | 80 | 20 | ||
6 | 70 | 30 |
ReproSil Chiral MIG (ACN:H2O) | ||||||
---|---|---|---|---|---|---|
99:1 | 95:5 | 90:10 | ||||
tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | |
CH3BiPh (R,S) | 16.249 | 24.047 | 19.213 | 29.732 | 38.991 | x |
C2H5BiPh (R,S) | 17.982 | - | 19.794 | 32.490 | 43.927 | x |
C4H9BiPh (R,S) | 21.064 | 34.482 | 24.200 | 41.358 | 65.211 | x |
C7H15BiPh (R,S) | 32.190 | 56.321 | 36.788 | 67.402 | * | * |
C2F5BiPh (R,S) | 6.575 | 8.010 | 7.004 | 8.360 | 15.802 | 25.353 |
C4F9BiPh (R,S) | 5.796 | 6.864 | 7.339 | 9.237 | 14.071 | 22.650 |
C7F15BiPh (R,S) | 6.228 | - | 5.896 | - | 16.045 | - |
CH3PhBi (R,S) | 13.870 | 24.105 | 16.030 | 30.678 | * | * |
C2H5PhBi (R,S) | 15.677 | 27.814 | 17.023 | 34.187 | * | * |
C4H9PhBi (R,S) | 18.922 | 35.141 | 27.073 | 69.253 | - | - |
C7H15PhBi (R,S) | 28.673 | 56.839 | 47.877 | 145.814 | - | - |
C4F9PhBi (R,S) | 5.446 | 6.449 | 6.653 | 9.741 | 12.486 | 22.448 |
C5F11PhBi (R,S) | 5.336 | 6.120 | 6.297 | 8.604 | 12.424 | 22.328 |
C7F15PhBi (R,S) | 5.635 | - | 7.343 | - | 15.815 | - |
99:1 | 95:5 | 90:10 | |
---|---|---|---|
CH3BiPh (R,S) | 4.896 | 7.013 | x |
C2H5BiPh (R,S) | - | 4.702 | x |
C4H9BiPh (R,S) | 5.964 | 8.418 | x |
C7H15BiPh (R,S) | 6.252 | 11.235 | * |
C2F5BiPh (R,S) | 2.362 | 2.723 | 6.030 |
C4F9BiPh (R,S) | 1.871 | 3.163 | 5.362 |
C7F15BiPh (R,S) | - | - | - |
CH3PhBi (R,S) | 4.874 | 8.138 | * |
C2H5PhBi (R,S) | 5.057 | 7.628 | * |
C4H9PhBi (R,S) | 5.662 | * | * |
C7H15PhBi (R,S) | 5.852 | * | * |
C4F9PhBi (R,S) | 1.488 | 3.219 | 4.151 |
C5F11PhBi (R,S) | 1.155 | 2.148 | 4.502 |
C7F15PhBi (R,S) | - | - | - |
99:1 | 95:5 | 90:10 | |||||||
---|---|---|---|---|---|---|---|---|---|
α | NS | NR | α | NS | NR | α | NS | NR | |
CH3BiPh (R,S) | 1.647 | 2981 | 2324 | 1.670 | 5367 | 4481 | 1.000 | - | - |
C2H5BiPh (R,S) | 1.000 | - | - | 1.784 | 1638 | 1088 | x | - | - |
C4H9BiPh (R,S) | 1.778 | 2929 | 1979 | 1.840 | 4210 | 4096 | x | - | - |
C7H15BiPh (R,S) | 1.848 | 2633 | 1870 | 1.926 | 3845 | 7680 | * | - | - |
C2F5BiPh (R,S) | 1.522 | 2643 | 2073 | 3.526 | 4231 | 3499 | 1.753 | 4025 | 2181 |
C4F9BiPh (R,S) | 1.871 | 2745 | 1544 | 1.467 | 2557 | 3472 | 1.782 | 3577 | 1608 |
C7F15BiPh (R,S) | 1.000 | - | - | 1.000 | - | - | 1.000 | - | - |
CH3PhBi (R,S) | 2.052 | 3207 | 993 | 2.630 | 2448 | 2394 | * | - | - |
C2H5PhBi (R,S) | 2.079 | 3516 | 1118 | 2.678 | 4268 | 1129 | * | - | - |
C4H9PhBi (R,S) | 2.115 | 3257 | 1019 | 1.000 | - | - | * | - | - |
C7H15PhBi (R,S) | 2.106 | 3033 | 962 | 1.000 | - | - | * | - | - |
C4F9PhBi (R,S) | 1.558 | 2607 | 784 | 1.571 | 2818 | 756 | 2.063 | 3477 | 1022 |
C5F11PhBi (R,S) | 1.075 | 2019 | 620 | 1.397 | 2021 | 470 | 2.083 | 2210 | 688 |
C7F15PhBi (R,S) | 1.000 | - | - | 1.000 | - | - | 1.000 | - | - |
99:1 | 95:5 | 90:10 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rs | α | NR | NS | Rs | α | NR | NS | Rs | α | NR | NS | |
CH3BiPh (R,S) | 0.284 | 1.062 | 1396 | 1256 | 0.140 | 1.048 | 344 | 907 | - | - | - | - |
C2H5BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
C4H9BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
C7H15BiPh (R,S) | - | - | - | - | 0.064 | 1.187 | 309 | 361 | - | - | - | - |
C2F5BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
C4F9BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
C7F15BiPh (R,S) | - | - | - | - | - | - | - | - | - | - | - | - |
CH3PhBi (R,S) | 1.855 | 1.274 | 2962 | 2823 | 1.615 | 1.133 | 7168 | 8689 | 1.480 | 1.091 | 7690 | 7925 |
C2H5PhBi (R,S) | 1.731 | 1.281 | 2341 | 2307 | 1.776 | 1.136 | 9521 | 8080 | 1.557 | 1.093 | 7813 | 7967 |
C4H9PhBi (R,S) | 1.775 | 1.271 | 2516 | 2458 | 2.417 | 1.199 | 8351 | 7716 | 1.583 | 1.091 | 7903 | 7993 |
C7H15PhBi (R,S) | 1.957 | 1.249 | 2500 | 2414 | 2.342 | 1.182 | 3612 | 4376 | 1.723 | 1.099 | 7275 | 7097 |
C4F9PhBi (R,S) | 0.267 | 1.260 | 1075 | 971 | 0.285 | 1.238 | 1459 | 1472 | 0.331 | 1.053 | 2576 | 2733 |
C5F11PhBi (R,S) | - | - | - | - | - | - | - | - | 0.336 | 1.040 | 1943 | 2149 |
C7F15PhBi (R,S) | - | - | - | - | - | - | - | - | 0.120 | 1.045 | 229 | 1809 |
ReproSil Chiral MIC (ACN:H2O) | ||||||
---|---|---|---|---|---|---|
99:1 | 95:5 | 90:10 | ||||
tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | |
CH3BiPh (R,S) | 7.077 | 7.302 | 7.545 | 7.731 | 12.108 | - |
C2H5BiPh (R,S) | 7.560 | - | 7.650 | - | 13.201 | - |
C4H9BiPh (R,S) | 7.698 | - | 8.946 | - | 15.070 | - |
C7H15BiPh (R,S) | 9.004 | - | 10.624 | 10.773 | 18.365 | - |
C2F5BiPh (R,S) | 4.372 | - | 4.510 | - | 6.690 | - |
C4F9BiPh (R,S) | 4.167 | - | 4.145 | - | 4.007 | - |
C7F15BiPh (R,S) | 4.007 | - | 4.438 | - | 5.989 | - |
CH3PhBi (R,S) | 8.144 | 9.351 | 8.525 | 9.167 | 13.662 | 14.609 |
C2H5PhBi (R,S) | 8.306 | 9.592 | 8.940 | 9.647 | 14.940 | 16.025 |
C4H9PhBi (R,S) | 8.625 | 9.947 | 8.993 | 10.020 | 17.028 | 18.282 |
C7H15PhBi (R,S) | 10.203 | 11.954 | 10.679 | 12.389 | 22.796 | 24.728 |
C4F9PhBi (R,S) | 4.310 | 4.457 | 4.316 | 4.446 | 6.662 | 6.835 |
C5F11PhBi (R,S) | 4.352 | - | 4.784 | - | 6.610 | 6.810 |
C7F15PhBi (R,S) | 4.136 | - | 4.187 | - | 6.429 | 6.568 |
ReproSil Chiral MIG | ReproSil Chiral MIC | |||||||
---|---|---|---|---|---|---|---|---|
CH3BiPh (R,S) | CH3PhBi (R,S) | |||||||
Rs | α | NS | NR | Rs | α | NR | NS | |
70% HEX, 30% IPA | 0.608 | 1.047 | 8110 | 1886 | 1.334 | 1.082 | 5942 | 5867 |
80% HEX, 20% IPA | 0.458 | 1.037 | 2640 | 3796 | 1.942 | 1.110 | 7023 | 6980 |
85% HEX, 15% IPA | 1.289 | 1.092 | 4129 | 3403 | 2.484 | 1.123 | 7502 | 7930 |
ReproSil Chiral MIG | ReproSil Chiral MIC | |||
---|---|---|---|---|
CH3BiPh (R,S) | CH3PhBi (R,S) | |||
tr1 [min] | tr2 [min] | tr1 [min] | tr2 [min] | |
70% HEX, 30% IPA | 6.712 | 6.999 | 7.216 | 7.736 |
80% HEX, 20% IPA | 7.648 | 7.902 | 9.312 | 10.219 |
85% HEX, 15% IPA | 10.347 | 11.260 | 12.247 | 13.714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojda, E.; Urbańska, M. The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters. Separations 2024, 11, 214. https://doi.org/10.3390/separations11070214
Wojda E, Urbańska M. The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters. Separations. 2024; 11(7):214. https://doi.org/10.3390/separations11070214
Chicago/Turabian StyleWojda, Edyta, and Magdalena Urbańska. 2024. "The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters" Separations 11, no. 7: 214. https://doi.org/10.3390/separations11070214
APA StyleWojda, E., & Urbańska, M. (2024). The Application of Polysaccharide Chiral Columns for the Separation of Fluorinated and Protonated Liquid Crystalline Racemic Esters. Separations, 11(7), 214. https://doi.org/10.3390/separations11070214