Application of Magnetic Separation Technology in Resource Utilization and Environmental Treatment
Abstract
:1. Introduction
2. Impurity Removal
2.1. Removing Impurities from Non-Metallic Ores
2.2. Removing Impurities during the Metallurgical Process
3. Metal Recovery
4. Separation during the Chemical Process
5. Magnetic Separation in Biomedical Targeting
6. Separation with Magnetic Species in Water and Wastewater Treatment
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Guo, Z.; Tang, H.; Li, J. Removal of Impurities from Metallurgical Grade Silicon by Liquation Refining Method. High Temp. Mater. Process. 2013, 32, 503–510. [Google Scholar] [CrossRef]
- Du, X.; Liang, C.; Hou, D.; Sun, Z.; Zheng, S. Scrubbing and Inhibiting Coagulation Effect on the Purification of Natural Powder Quartz. Minerals 2019, 9, 140. [Google Scholar] [CrossRef]
- Li, X.; Lv, X.; Xiang, L. Review of the State of Impurity Occurrences and Impurity Removal Technology in Phosphogypsum. Materials 2023, 16, 5630. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Zhou, L.; Lu, J.; Pang, S.; Sun, Y.; Pang, J.; Wang, D.; Wei, K.; Ma, W.; Wang, Z. Toward Sustainability for Upcycling Sog-Si Scrap by an Immersion Rotational Segregation Purification Process. J. Clean. Prod. 2023, 416, 137978. [Google Scholar] [CrossRef]
- Jin, J.J.; Li, S.Q.; Zhao, X.; Guo, P.H.; Li, F. Study on Iron Removal by S-Hgms from Tungsten Tailings. Prog. Supercond. Cryog. 2020, 22, 17–20. [Google Scholar]
- John, M.; Choudhury, T.; Filimonov, R.; Kurvinen, E.; Saeed, M.; Mikkola, A.; Mänttäri, M.; Louhi-Kultanen, M. Impurity Separation Efficiency of Multi-Component Wastewater in a Pilot-Scale Freeze Crystallizer. Sep. Purif. Technol. 2020, 236, 116271. [Google Scholar] [CrossRef]
- Chi, Y.; Tian, C.; Li, H.; Zhao, Y. Polymerized Titanium Salts for Algae-Laden Surface Water Treatment and the Algae-Rich Sludge Recycle Toward Chromium and Phenol Degradation from Aqueous Solution. ACS Sustain. Chem. Eng. 2019, 7, 12964–12972. [Google Scholar] [CrossRef]
- Meng, L.; Wang, Z.; Wang, L.; Guo, L.; Guo, Z. Novel and Efficient Purification of Scrap Al-Mg Alloys Using Supergravity Technology. Waste Manag. 2021, 119, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Guo, L.; Bao, Q.; Guo, Z. Rapid Removal of Copper Impurity from Bismuth-Copper Alloy Melts Via Super-Gravity Separation. Int. J. Miner. Metall. Mater. 2021, 28, 1929–1939. [Google Scholar] [CrossRef]
- Nakhaei, F.; Irannajad, M. Reagents Types in Flotation of Iron Oxide Minerals: A Review. Miner. Process. Extr. Metall. Rev. 2018, 39, 89–124. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, J.; Wei, M.; Li, F.; Ban, B.; Li, J. Effect of Impurity Content Difference Between Quartz Particles on Flotation Behavior and its Mechanism. Powder Technol. 2020, 375, 504–512. [Google Scholar] [CrossRef]
- Celik, M.S.; Pehlivanoglu, B.; Aslanbas, A.; Asmatulu, R. Flotation of Colored Impurities from Feldspar Ores. Min. Metall. Explor. 2001, 18, 101–105. [Google Scholar] [CrossRef]
- Kamali, S.; Sarraf-Mamoory, R.; Yourdkhani, A. A Novel Process for Extracting Bismuth from High Iron Content Copper Smelting Dust by Magnetic Separation and Leaching Process. Miner. Eng. 2024, 207, 108570. [Google Scholar] [CrossRef]
- Ku, J.G.; Lei, Z.Y.; Xia, J.; Guo, B.; Chen, H.H.; Peng, X.L.; Ran, H.X.; Deng, R.D. Dynamic Behavior and Separation Prediction of Magnetic Ore Bulks in Dry Medium-Intensity Magnetic Separator. Miner. Eng. 2021, 171, 107113. [Google Scholar] [CrossRef]
- Ku, J.G.; Lei, Z.Y.; Lin, H.; Yan, Q.X.; Chen, H.H.; Guo, B. Interaction of Magnetic Spheres in Magnetic Fields from the View of Magnetic Energy Density: A 3D Finite Element Analysis (Fea). Int. J. Min. Sci. Technol. 2022, 32, 1341–1350. [Google Scholar] [CrossRef]
- Mohanty, K.; Oliva, J.; Alfonso, P.; Sampaio, C.H.; Anticoi, H. A Comparative Study of Quartz and Potassium Feldspar Flotation Process Using Different Chemical Reagents. Minerals 2024, 14, 167. [Google Scholar] [CrossRef]
- Mathur, R.; Emproto, C.; Simon, A.C.; Godfrey, L.; Knaack, C.; Vervoort, J.D. A Chemical Separation and Measuring Technique for Titanium Isotopes for Titanium Ores and Iron-Rich Minerals. Minerals 2022, 12, 644. [Google Scholar] [CrossRef]
- Li, D.K.; Kou, J.; Sun, C.B.; Xing, Y.; Sun, J.F.; Jia, F.M.; Yu, B.Q.; Zhou, K.D. The Application of Superconducting Magnetic Separation in Copper-Moly Separation. Sep. Sci. Technol. 2019, 54, 1871–1878. [Google Scholar] [CrossRef]
- Chibowski, E.; Szczes, A. Magnetic Water Treatment a Review of the Latest Approaches. Chemosphere 2018, 203, 54–67. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Jia, H.; Wen, H.T.; Li, J.; Liu, W.B.; Li, J.Y. The Investigation on Fe3O4 Magnetic Flocculation for High Efficiency Treatment of Oily Micro-Polluted Water. J. Environ. Manag. 2019, 244, 399–407. [Google Scholar] [CrossRef]
- Li, J.S.; Li, X.X.; Shen, Q.; Zhang, Z.Z.; Du, F.H. Further Purification of Industrial Quartz by Much Milder Conditions and a Harmless Method. Environ. Sci. Technol. 2010, 44, 7673–7677. [Google Scholar] [CrossRef] [PubMed]
- Zegeye, A.; Yahaya, S.; Fialips, C.I.; White, M.L.; Gray, N.D.; Manning, D. Refinement of Industrial Kaolin by Microbial Removal of Iron-Bearing Impurities. Appl. Clay Sci. 2013, 86, 47–53. [Google Scholar] [CrossRef]
- Celik, M.S.; Can, I.; Eren, R.H. Removal of Titanium Impurities from Feldspar Ores by New Flotation Collectors. Miner. Eng. 1998, 11, 1201–1208. [Google Scholar] [CrossRef]
- Vegliò, F.; Passariello, B.; Abbruzzese, C. Iron Removal Process for High-Purity Silica Sands Production by Oxalic Acid Leaching. Ind. Eng. Chem. Res. 1999, 38, 4443–4448. [Google Scholar] [CrossRef]
- Chen, L.Z.; Zheng, Y.M.; Zeng, J.W.; Zheng, Y.X.; Liu, J. Magnetic Field Characteristics of Wet Belt Permanent High Gradient Magnetic Separator and its Full-Scale Purification for Garnet Ore. IEEE Trans. Magn. 2017, 53, 4900305. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Cao, C.; Xu, Y.; Zhu, Y. Development of Crimm Double Canister Reciprocating Hg Permanent Magnetic Separator & its Application. Non-Met. Mines 2008, 31, 47–48. [Google Scholar]
- Xu, J.Y.; Xiong, D.H.; Song, S.X.; Chen, L.Z. Superconducting Pulsating High Gradient Magnetic Separation for Fine Weakly Magnetic Ores: Cases of Kaolin and Chalcopyrite. Results Phys. 2018, 10, 837–840. [Google Scholar] [CrossRef]
- Lizama, H.M. Processing of Chalcopyrite Ore by Heap Leaching and Flotation. Int. J. Miner. Process. 2017, 168, 55–67. [Google Scholar] [CrossRef]
- Elkaddah, N.; Patel, A.D.; Natarajan, T.T. The Electromagnetic Filtration of Molten Aluminum Using an Induced-Current Separator. JOM 1995, 47, 46–49. [Google Scholar] [CrossRef]
- Shu, D.; Li, T.X.; Sun, B.D.; Wang, J.; Zhou, Y.H. Study of Electromagnetic Separation of Nometallic Inclusions from Aluminum Melt. Metall. Mater. Trans. A 1999, 30, 2979–2988. [Google Scholar] [CrossRef]
- Asai, S. Development of Electromagnetic Processing of Materials. In Electromagnetic Processing of Materials: Materials Processing by Using Electric and Magnetic Functions; Asai, S., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–7. [Google Scholar]
- Leenov, D.; Kolin, A. Theory of Electromagnetophoresis. I. Magnetohydrodynamic Forces Experienced by Spherical and Symmetrically Oriented Cylindrical Particles. J. Chem. Phys. 1954, 22, 683–688. [Google Scholar] [CrossRef]
- Zhang, L.F.; Wang, S.Q.; Dong, A.P.; Gao, J.W.; Damoah, L. Application of Electromagnetic (Em) Separation Technology to Metal Refining Processes: A Review. Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci. 2014, 45, 2153–2185. [Google Scholar] [CrossRef]
- Toh, T.; Yamamura, H.; Kondo, H.; Wakoh, M.; Shimasak, S.; Taniguchi, S. Kinetics Evaluation of Inclusions Removal During Levitation Melting of Steel in Cold Crucible. ISIJ Int. 2007, 47, 1625–1632. [Google Scholar] [CrossRef]
- Fautrelle, Y. Metallurgical Applications of Magnetohydrodynamics; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1993; pp. 3–23. [Google Scholar]
- Taniguchi, S.; Brimacombe, J.K. Application of Pinch Force to the Separation of Inclusion Particles from Liquid Steel. ISIJ Int. 1994, 34, 722–731. [Google Scholar] [CrossRef]
- Chino, Y.; Iwai, K.; Asai, S. Propagation Characteristics of Surface Wave on Free Surface of a Molten Metal Induced by Imposition of Intermittent Alternating Magnetic Field. Tetsu Hagane-J. Iron Steel Inst. Jpn. 2001, 87, 579–584. [Google Scholar] [CrossRef]
- Shu, D.; Sun, B.; Li, K.; Wang, J.; Zhou, Y. Effects of Secondary Flow on the Electromagnetic Separation of Inclusions from Aluminum Melt in a Square Channel by a Solenoid. ISIJ Int. 2002, 42, 1241–1250. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; Shu, D.; Li, T.X.; Sun, B.D.; Zhou, Y.H. Theoretical and Experimental Investigation of Aluminum Melt Cleaning Using Alternating Electromagnetic Field. Mater. Lett. 2002, 56, 215–220. [Google Scholar] [CrossRef]
- Taniguchi, S.; Kikuchi, A. Removal of Nonmetallic Inclusion from Liquid Metal by Ac-Electromagnetic Force. In Proceedings of the 3rd International Symposium on Electromagnetic Processing of Materials, EPM2000, Nagoya, Japan, 1 January 2000. [Google Scholar]
- Takahashi, K.; Taniguchi, S. Electromagnetic Separation of Nonmetallic Inclusion from Liquid Metal by Imposition of High Frequency Magnetic Field. ISIJ Int. 2003, 43, 820–827. [Google Scholar] [CrossRef]
- Shu, D.; Sun, B.D.; Li, K.; Li, T.X.; Xu, Z.M.; Zhou, Y.H. Continuous Separation of Non-Metallic Inclusions from Aluminum Melt Using Alternating Magnetic Field. Mater. Lett. 2002, 55, 322–326. [Google Scholar] [CrossRef]
- Yamao, F.; Sassa, K.; Iwai, K.; Asai, S. Separation of Inclusions in Liquid Metal Using Fixed Alternating Magnetic Field. Tetsu Hagane-J. Iron Steel Inst. Jpn. 1997, 83, 30–35. [Google Scholar]
- Barnwal, A.; Dhawan, N. Physical Processing of Discarded Integrated Circuits for Recovery of Metallic Values. JOM 2020, 72, 2730–2738. [Google Scholar] [CrossRef]
- Fan, E.S.; Li, L.; Wang, Z.P.; Lin, J.; Huang, Y.X.; Yao, Y.; Chen, R.J.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, L.H.; Zhao, Z.W.; Wang, D.Z.; Xu, W.H. Recovery of Lithium and Manganese from Scrap Limn2O4 by Slurry Electrolysis. ACS Sustain. Chem. Eng. 2019, 7, 16738–16746. [Google Scholar] [CrossRef]
- Zhang, X.X.; Li, L.; Fan, E.S.; Xue, Q.; Bian, Y.F.; Wu, F.; Chen, R.J. Toward Sustainable and Systematic Recycling of Spent Rechargeable Batteries. Chem. Soc. Rev. 2018, 47, 7239–7302. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Ma, X.T.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Li, L.; Fan, E.S.; Guan, Y.; Zhang, X.X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R.J. Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustain. Chem. Eng. 2017, 5, 5224–5233. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, J.; Song, D.W.; Song, J.S.; Zhang, L.Q. Direct Regeneration of Recycled Cathode Material Mixture from Scrapped Lifepo4 Batteries. J. Power Sources 2017, 345, 78–84. [Google Scholar] [CrossRef]
- Liu, K.; Tan, Q.Y.; Liu, L.L.; Li, J.H. Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries Via a Mechanochemically Induced Isomorphic Substitution. Environ. Sci. Technol. 2019, 53, 9781–9788. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Z.; Wang, X.; Zhou, M.Y.; Wang, Q. A Redox Targeting-Based Material Recycling Strategy for Spent Lithium Ion Batteries. Energy Environ. Sci. 2019, 12, 2672–2677. [Google Scholar] [CrossRef]
- Zhang, B.; Qu, X.; Chen, X.; Liu, D.; Zhao, Z.; Xie, H.; Wang, D.; Yin, H. A Sodium Salt-Assisted Roasting Approach Followed by Leaching for Recovering Spent Lifepo4 Batteries. J. Hazard. Mater. 2022, 424, 127586. [Google Scholar] [CrossRef]
- Yüksel, S.; Dinçer, H.; Meral, Y. Financial Analysis of International Energy Trade: A Strategic Outlook for Eu-15. Energies 2019, 12, 431. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, W.P.; Li, S.F.; Zhang, F.W.; Zhu, Y.H.; Huang, X.L. Identifying Critical Factors of Oil Spill in the Tanker Shipping Industry Worldwide. J. Clean. Prod. 2018, 180, 1–10. [Google Scholar] [CrossRef]
- Barron, M.G.; Vivian, D.N.; Heintz, R.A.; Yim, U.H. Long-Term Ecological Impacts from Oil Spills: Comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon. Environ. Sci. Technol. 2020, 54, 6456–6467. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.P.; Tarnecki, J.H.; Garner, S.B.; Chagaris, D.D.; Patterson, W.F. Changes in Reef Fish Community Structure Following the Deepwater Horizon Oil Spill. Sci. Rep. 2020, 10, 5621. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wu, M.L.; Liu, H.; Xu, Y.R.; Liu, Z.L. Effect of Petroleum Hydrocarbon Pollution Levels on the Soil Microecosystem and Ecological Function. Environ. Pollut. 2022, 293, 118511. [Google Scholar] [CrossRef]
- Baker, M.C.; Steinhoff, M.A.; Fricano, G.F. Integrated Effects of the Deepwater Horizon Oil Spill on Nearshore Ecosystems. Mar. Ecol. Prog. Ser. 2017, 576, 219–234. [Google Scholar] [CrossRef]
- Wallace, B.P.; Brosnan, T.; McLamb, D.; Rowles, T.; Ruder, E.; Schroeder, B.; Schwacke, L.; Stacy, B.; Sullivan, L.; Takeshita, R.; et al. Effects of the Deepwater Horizon Oil Spill on Protected Marine Species. Endanger. Species Res. 2017, 33, 1–7. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, Y.; Xu, X.; Liao, Y.; Shou, L.; Liu, J.; Chen, Q.; Zeng, J. Advance in the Toxic Effects of Petroleum Water Accommodated Fraction on Marine Plankton. Acta Ecol. Sin. 2010, 30, 8–15. [Google Scholar] [CrossRef]
- Laffon, B.; Pásaro, E.; Valdiglesias, V. Effects of Exposure to Oil Spills on Human Health: Updated Review. J. Toxicol. Environ. Health Part B 2016, 19, 105–128. [Google Scholar] [CrossRef]
- Faksness, L.; Altin, D.; Dolva, H.; Nordtug, T. Chemical and Toxicological Characterisation of Residues from Offshore in-Situ Burning of Spilled Fuel Oils. Toxicol. Rep. 2022, 9, 163–170. [Google Scholar] [CrossRef]
- Delaune, R.D.; Lindau, C.W.; Jugsujinda, A. Effectiveness of “Nochar” Solidifier Polymer in Removing Oil from Open Water in Coastal Wetlands. Spill Sci. Technol. Bull. 1999, 5, 357–359. [Google Scholar] [CrossRef]
- Xie, A.T.; Chen, Y.Y.; Cui, J.Y.; Lang, J.H.; Li, C.X.; Yan, Y.S.; Dai, J.D. Facile and Green Fabrication of Superhydrophobic Sponge for Continuous Oil/Water Separation from Harsh Environments. Colloids Surf. A-Physicochem. Eng. Asp. 2019, 563, 120–129. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Li, C.; Liang, H.W.; Zhang, Y.N.; Wang, X.; Chen, J.F.; Yu, S.H. Carbon Nanofiber Aerogels for Emergent Cleanup of Oil Spillage and Chemical Leakage Under Harsh Conditions. Sci. Rep. 2014, 4, 4079. [Google Scholar] [CrossRef] [PubMed]
- Renjith, P.K.; Sarathchandran, C.; Chandramohanakumar, N.; Sekkar, V. Silica Aerogel Composite with Inherent Superparamagnetic Property: A Pragmatic and Ecofriendly Approach for Oil Spill Clean-Up Under Harsh Conditions. Mater. Today Sustain. 2023, 24, 100498. [Google Scholar] [CrossRef]
- Wu, S.Y.; Xiang, Y.J.; Cai, Y.Q.; Liu, J.F. Superhydrophobic Magnetic Fe3O4 Polyurethane Sponges for Oil-Water Separation and Oil-Spill Recovery. J. Environ. Sci. 2024, 139, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, D.; Brent, R. Introduction to vectors derived from filamentous phages. In Current Protocols in Molecular Biology; Unit 1–Unit 14; John Wiley & Sons, Inc.: Boston, MA, USA, 2001; Chapter 1. [Google Scholar]
- Leuschner, C.; Kumar, C.S.S.R. Nanoparticles for Cancer Drug Delivery. In Nanofabrication towards Biomedical Applications; Wiley: Weinheim, Germany, 2005; pp. 289–326. [Google Scholar]
- Xu, C.J.; Xu, K.M.; Gu, H.W.; Zhong, X.F.; Guo, Z.H.; Zheng, R.K.; Zhang, X.X.; Xu, B. Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins. J. Am. Chem. Soc. 2004, 126, 3392–3393. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.B.; Park, S.; Mirkin, C.A. Multicomponent Magnetic Nanorods for Biomolecular Separations. Angew. Chem.-Int. Ed. 2004, 43, 3048–3050. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.; Lee, N.; Park, J.; Kim, B.H.; Yi, Y.W.; Kim, T.; Kim, T.K.; Lee, I.H.; Paik, S.R.; Hyeon, T. Ni/Nio Core/Shell Nanoparticles for Selective Binding and Magnetic Separation of Histidine-Tagged Proteins. J. Am. Chem. Soc. 2006, 128, 10658–10659. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.H.; Qi, D.W.; Deng, C.H.; Zhang, X.M.; Zhao, D.Y. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@Sio2 Core and Perpendicularly Aligned Mesoporous Sio2 Shell for Removal of Microcystins. J. Am. Chem. Soc. 2008, 130, 28. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Liu, H.Z. Synthesis and Surface Modification of Magnetic Particles for Application in Biotechnology and Biomedicine. China Particuol. 2007, 5, 1–10. [Google Scholar] [CrossRef]
- Xu, X.; Deng, C.; Gao, M.; Yu, W.; Yang, P.; Zhang, X. Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Adv. Mater. 2006, 18, 3289–3293. [Google Scholar] [CrossRef]
- Kim, J.; Piao, Y.; Lee, N.; Park, Y.I.; Lee, I.H.; Lee, J.H.; Paik, S.R.; Hyeon, T. Magnetic Nanocomposite Spheres Decorated with Nio Nanoparticles for a Magnetically Recyclable Protein Separation System. Adv. Mater. 2010, 22, 57. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kang, E.; Son, S.U.; Park, H.M.; Lee, M.K.; Kim, J.; Kim, K.W.; Noh, H.J.; Park, J.H.; Bae, C.J.; et al. Monodisperse Nanoparticles of Ni and Nio: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction. Adv. Mater. 2005, 17, 429–434. [Google Scholar] [CrossRef]
- Deng, Y.; Deng, C.; Qi, D.; Liu, C.; Liu, J.; Zhang, X.; Zhao, D. Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin. Adv. Mater. 2009, 21, 1377–1382. [Google Scholar] [CrossRef]
- Ochieng, G.M.; Seanego, E.S.; Nkwonta, O.I. Impacts of Mining on Water Resources in South Africa: A Review. Sci. Res. Essays 2010, 5, 3351–3357. [Google Scholar]
- Dehghani, M.H.; Ahmadi, S.; Ghosh, S.; Othmani, A.; Osagie, C.; Meskini, M.; AlKafaas, S.S.; Malloum, A.; Khanday, W.A.; Jacob, A.O.; et al. Recent Advances on Sustainable Adsorbents for the Remediation of Noxious Pollutants from Water and Wastewater: A Critical Review. Arab. J. Chem. 2023, 16, 105303. [Google Scholar] [CrossRef]
- Allahkarami, E.; Monfared, A.D.; Silva, L.; Dotto, G.L. Lead Ferrite-Activated Carbon Magnetic Composite for Efficient Removal of Phenol from Aqueous Solutions: Synthesis, Characterization, and Adsorption Studies. Sci. Rep. 2022, 12, 10718. [Google Scholar] [CrossRef] [PubMed]
- Koksharov, Y.A.; Gubin, S.P.; Taranov, I.; Khomutov, G.B.; Gulyaev, Y. Magnetic Nanoparticles in Medicine: Progress, Problems, and Advances. J. Commun. Technol. Electron. 2022, 67, 101–116. [Google Scholar] [CrossRef]
- Kubelick, K.P.; Mehrmohammadi, M. Magnetic Particles in Motion: Magneto-Motive Imaging and Sensing. Theranostics 2022, 12, 1783–1799. [Google Scholar] [CrossRef]
- Nakhlband, A.; Kholafazad-Kordasht, H.; Rahimi, M.; Mokhtarzadeh, A.; Soleymani, J. Applications of Magnetic Materials in the Fabrication of Microfluidic-Based Sensing Systems: Recent Advances. Microchem. J. 2022, 173, 107042. [Google Scholar] [CrossRef]
- Agasti, N.; Gautam, V.; Priyanka; Manju; Pandey, N.; Genwa, M.; Meena, P.L.; Tandon, S.; Samantaray, R. Carbon Nanotube Based Magnetic Composites for Decontamination of Organic Chemical Pollutants in Water: A Review. Appl. Surf. Sci. Adv. 2022, 10, 100270. [Google Scholar] [CrossRef]
- Gao, H.R.; Li, W.T.; Duan, S.Y.; Jin, S.L.; Xiong, C.X. Synthesis of Fe3O4/Go Magnetic Nanomaterials and their Adsorption of Gentian Violet Dye. New Chem. Mater. 2023, 51, 295–300. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, J.; Wang, K.; Wang, Q.; Lei, Z. Application of Magnetic Separation Technology in Resource Utilization and Environmental Treatment. Separations 2024, 11, 130. https://doi.org/10.3390/separations11050130
Ku J, Wang K, Wang Q, Lei Z. Application of Magnetic Separation Technology in Resource Utilization and Environmental Treatment. Separations. 2024; 11(5):130. https://doi.org/10.3390/separations11050130
Chicago/Turabian StyleKu, Jiangang, Kunpeng Wang, Qian Wang, and Zhongyun Lei. 2024. "Application of Magnetic Separation Technology in Resource Utilization and Environmental Treatment" Separations 11, no. 5: 130. https://doi.org/10.3390/separations11050130
APA StyleKu, J., Wang, K., Wang, Q., & Lei, Z. (2024). Application of Magnetic Separation Technology in Resource Utilization and Environmental Treatment. Separations, 11(5), 130. https://doi.org/10.3390/separations11050130