β-Diketone-Driven Deep Eutectic Solvent for Ultra-Efficient Natural Stable Lithium-7 Isotope Separation
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Chemicals
2.2. Aqueous-Phase Composition and Lithium Testing
2.3. Preparation and Characterization of DES
2.4. Solvent Extraction Experiment
2.5. Stripping Experiment
3. Results and Discussion
3.1. Characterization of the DES Extractant
3.2. The Separation of 6Li and 7Li by DES Extractant
3.3. Explanation of the Mechanism
3.3.1. DES and DES Solvation
3.3.2. Different Kinds of Aqueous-Phase Anions
3.3.3. Reaction Kinetics
3.3.4. DFT Calculations
3.4. Stripping of Li+ from the Metal-Loaded DES
3.5. Reusability of the DES Extractant
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ault, T.; Brozek, K.; Fan, L.; Folsom, M. Lithium Isotope Enrichment: Feasible Domestic Enrichment Alternatives; University of California: Berkeley, CA, USA, 2012; pp. 3–4. [Google Scholar]
- Symons, E.A. Lithium isotope-separation-a review of possible techniques. Sep. Sci. Technol. 1985, 20, 633–651. [Google Scholar]
- Ho, M.K.M.; Yeoh, G.H.; Braoudakis, G. Molten salt reactors. In Materials and Processes for Energy: Communicating Current Research and Technological Developments; Formatex: Badajoz, Spain, 2013; pp. 761–768. [Google Scholar]
- Zhang, Z.; Murali, A.M.; Sarswat, P.K.; Free, M.L. High-efficiency lithium isotope separation in an electrochemical system with 1-butyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and diethyl carbonate as the solvents. Sep. Purif. Technol. 2020, 253, 117539. [Google Scholar] [CrossRef]
- Alam, T.M.; Conzone, S.; Brow, R.K.; Boyle, T.J. 6Li, 7Li nuclear magnetic resonance investigation of lithium coordination in binary phosphate glasses. J. Non-Cryst. Solids 1999, 258, 140–154. [Google Scholar] [CrossRef]
- Qi, X.Q.; Zhang, P.P.; Yan, Z.C.; Drake, G.W.F.; Zhong, Z.X.; Shi, T.Y.; Chen, S.L.; Huang, Y.; Guan, H.; Gao, K.L. Precision calculation of hyperfine structure and the zemach radii of 6,7Li+ ions. Phys. Rev. Lett. 2020, 125, 183002. [Google Scholar] [CrossRef]
- Cui, L.; Yang, X.; Wang, J.; He, H.; Guo, Y.; Cheng, F.; Zhang, S. Theoretical prediction of 6Li/7Li separation in solvent extraction system using Urey model. Chem. Eng. J. 2019, 358, 435–445. [Google Scholar] [CrossRef]
- Lewis, G.N.; Macdonald, R.T. The separation of lithium isotopes. J. Am. Chem. Soc. 2002, 58, 2519–2524. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Jia, Y.; Zhu, W.; Zhang, Q.; Wang, X.; Yao, Y.; Jing, Y. Lithium isotope separation by crown ethers of different nitrogen-containing derivatives in the ionic liquid-anisole system. J. Mol. Liq. 2018, 272, 548–553. [Google Scholar] [CrossRef]
- Xiao, J.; Jia, Y.; Shi, C.; Wang, X.; Ying, Y.; Yan, J. Liquid-liquid extraction separation of lithium isotopes by using room-temperature ionic liquids-chloroform mixed solvent system contained benzo-15-crown-5. J. Mol. Liq. 2016, 223, 1032–1038. [Google Scholar] [CrossRef]
- Saleem, M.; Hussain, S.; Zia, M.A.; Baig, M.A. An efficient pathway for 6 Li isotope enrichment. Appl. Phys. B Lasers Opt. 2007, B87, 723–726. [Google Scholar] [CrossRef]
- Cui, L.; Fan, Y.; Li, S.; Bai, R.; Guo, Y.; Cheng, F. Research progress on the theory and new technology for separation of lithium isotopes by chemical exchange. CIESC J. 2021, 72, 3215–3227. [Google Scholar]
- Cui, L.; Li, S.; Kang, J.; Yin, C.; Guo, Y.; He, H.; Cheng, F. A novel ion-pair strategy for efficient separation of lithium isotopes using crown ethers. Sep. Purif. Technol. 2021, 274, 118989. [Google Scholar] [CrossRef]
- He, L.; Weng, X.; Yang, D.; Song, C. Extraction of stronium from high—Level active waste with crown—Ether. J. Nucl. Radiochem. 1994, 16, 22. [Google Scholar]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Abranches, D.O.; Martins, M.A.R.; Silva, L.P.; Schaeffer, N.; Pinho, S.P.; Coutinho, J.A.P. Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest for type V DES. Chem. Commun. 2019, 55, 10253–10256. [Google Scholar] [CrossRef]
- Florindo, C.; Branco, L.C.; Marrucho, I.M. Quest for green-solvent design: From hydrophilic to hydrophobic (deep) eutectic solvents. ChemSusChem 2019, 12, 1549–1559. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the nature of eutectic and deep eutectic mixtures. J. Solut. Chem. 2018, 48, 962–982. [Google Scholar] [CrossRef]
- Osch, D.; Dietz, C.; Warrag, S.; Kroon, M.C. The curious case of hydrophobic deep eutectic solvents: A story on the discovery, design, and applications. ACS Sustain. Chem. Eng. 2020, 8, 10591–10612. [Google Scholar]
- Wang, T.; Luo, H.; Bai, Y.; Li, J.; Belharouak, I.; Dai, S. Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv. Energy Mater. 2020, 10, 2001204. [Google Scholar] [CrossRef]
- Geng, S.; Dong, H.; Lu, Y.; Wang, S.; Huang, Y.; Zou, X.; Zhang, Y.; Xu, Q.; Lu, X. Electrolytic production of Cu-Ni alloy from nickel matte through chlorination and deep eutectic solvent leaching-electrodeposition. Sep. Purif. Technol. 2020, 242, 116779. [Google Scholar] [CrossRef]
- Hanada, T.; Goto, M. Synergistic deep eutectic solvents for lithium extraction. ACS Sustain. Chem. Eng. 2021, 9, 2152–2160. [Google Scholar] [CrossRef]
- van den Bruinhorst, A.; Raes, S.; Maesara, S.A.; Kroon, M.C.; Esteves, A.C.C.; Meuldijk, J. Hydrophobic eutectic mixtures as volatile fatty acid extractants. Sep. Purif. Technol. 2019, 216, 147–157. [Google Scholar] [CrossRef]
- van Osch, D.J.G.P.; Zubeir, L.F.; van den Bruinhorst, A.; Rocha, M.A.A.; Kroon, M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef]
- Lin, H.; Gong, K.; Hykys, P.; Chen, D.; Ying, W.; Sofer, Z.; Yan, Y.; Li, Z.; Peng, X. Nanoconfined deep eutectic solvent in laminated MXene for efficient CO2 separation. Chem. Eng. J. 2021, 405, 126961. [Google Scholar] [CrossRef]
- Lian, S.; Li, R.; Zhang, Z.; Liu, Q.; Song, C.; Lu, S. Improved CO2 separation performance and interfacial affinity of composite membranes by incorporating amino acid-based deep eutectic solvents. Sep. Purif. Technol. 2021, 272, 118953. [Google Scholar] [CrossRef]
- Haider, M.B.; Kumar, R. Solubility of CO2 and CH4 in sterically hindered amine-based deep eutectic solvents. Sep. Purif. Technol. 2020, 248, 117055. [Google Scholar] [CrossRef]
- Yadav, N.; Venkatesu, P. Current understanding and insights towards protein stabilization and activation in deep eutectic solvents as sustainable solvent media. Phys. Chem. Chem. Phys. 2022, 24, 13474–13509. [Google Scholar] [CrossRef]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Kist, J.A.; Zhao, H.; Mitchell-Koch, K.R.; Baker, G.A. The study and application of biomolecules in deep eutectic solvents. J. Mater. Chem. B 2021, 9, 536–566. [Google Scholar] [CrossRef]
- Villar, L.; Martínez-Rico, Ó.; Asla, A.; Domínguez, Á.; González, B. Testing thymol-based DES for the elimination of 11 textile dyes from water. Separations 2022, 9, 442. [Google Scholar] [CrossRef]
- Lin, W.; Zhao, Z.; Yang, F.; Liu, Z.; Tan, F.; Xie, M.; Ma, Y.; Meng, L. Promising priority separation of europium from lanthanide by novel DGA-functionalized metal organic frameworks. Miner. Eng. 2021, 164, 106831. [Google Scholar] [CrossRef]
- Tang, T.; Yang, F.; Xie, M.; Xue, L.; Jiang, Z.; Xie, Z.; Wang, K.; Li, Z.; Geng, L.; Hu, T. Highly efficient separation and enrichment of hafnium from zirconium oxychloride solutions by advanced ion-imprinted membrane separation technology. J. Membr. Sci. 2023, 668, 121237. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, F.; Zhao, Z.; Liao, Q.; Zhang, Y.; Chen, P.; Guo, W.; Bai, R. A simple preparation method for rare-earth phosphate nano materials using an ionic liquid-driven supported liquid membrane system. J. Ind. Eng. Chem. 2017, 54, 369–376. [Google Scholar] [CrossRef]
- Cai, C.; Yang, F.; Zhao, Z.; Liao, Q.; Bai, R.; Guo, W.; Chen, P.; Zhang, Y.; Zhang, H. Promising transport and high-selective separation of Li(I) from Na(I) and K(I) by a functional polymer inclusion membrane (PIM) system. J. Membr. Sci. 2019, 579, 1–10. [Google Scholar] [CrossRef]
- Sloop, J.C.; Bumgardner, C.L.; Washington, G.; Loehle, W.D.; Sankar, S.S.; Lewis, A.B. Keto-enol and enol-enol tautomerism in trifluoromethyl-β-diketones. J. Fluor. Chem. 2006, 127, 780–786. [Google Scholar] [CrossRef]
- Darugar, V.R.; Vakili, M.; Nekoei, A.R.; Tayyari, S.F.; Afzali, R. Tautomerism, molecular structure, intramolecular hydrogen bond, and enol-enol equilibrium of para halo substituted 4,4,4-trifluoro-1-phenyl-1,3-butanedione; Experimental and theoretical studies. J. Mol. Struct. 2017, 1150, 427–437. [Google Scholar] [CrossRef]
- Nekoei, A.-R.; Tayyari, S.F.; Vakili, M.; Holakoei, S.; Hamidian, A.H.; Sammelson, R.E. Conformation and vibrational spectra and assignment of 2-thenoyltrifluoroacetone. J. Mol. Struct. 2009, 932, 112–122. [Google Scholar] [CrossRef]
- Gilmore, M.; McCourt, E.N.; Connolly, F.; Nockemann, P.; Swadzba-Kwasny, M.; Holbrey, J.D. Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: Advanced liquid extractants. ACS Sustain. Chem. Eng. 2018, 6, 17323–17332. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Y.; Huang, F.; Gu, D.; Gan, F. Synthesis, spectral, and thermal characterizations of Ni(II) and Cu(II) beta-diketone complexes with thenoyltrifluoroacetone ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 66, 1024–1029. [Google Scholar] [CrossRef]
- Eshaghi Malekshah, R.; Salehi, M.; Kubicki, M.; Khaleghian, A. Crystal structure, molecular docking, and biological activity of the zinc complexes with 2-thenoyltrifluoroacetone and N-donor heterocyclic ligands. J. Mol. Struct. 2017, 1150, 155–165. [Google Scholar] [CrossRef]
- Thamilarasan, V.; Jayamani, A.; Sengottuvelan, N. Synthesis, molecular structure, biological properties and molecular docking studies on Mn(II), Co(II) and Zn(II) complexes containing bipyridine-azide ligands. Eur. J. Med. Chem. 2015, 89, 266–278. [Google Scholar] [CrossRef]
- Ma, J. Preparation and characterization of ZrO2 nanoparticles capped by trioctylphosphine oxide (TOPO). J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2011, 26, 611–614. [Google Scholar] [CrossRef]
- Yerushalmi, R.; Ho, J.C.; Fan, Z.; Javey, A. Phosphine oxide monolayers on SiO2 surfaces. Angew. Chem. Int. Ed. Engl. 2008, 47, 4440–4442. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Ni, S.; Bie, C.; Zhi, H.; Sun, X. A clean process for selective recovery of copper from industrial wastewater by extraction-precipitation with p-tert-octyl phenoxy acetic acid. J. Environ. Manag. 2022, 304, 114164. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Huang, K.; Liu, H. The nature of salt effect in enhancing the extraction of rare earths by non-functional ionic liquids: Synergism of salt anion complexation and hofmeister bias. J. Colloid Interface Sci. 2019, 539, 214–222. [Google Scholar] [CrossRef]
- He, M.; Liu, Y. Design for PVC mombrane ion-selective electrodes based on ion-pairsof triphenylmethane dye-anions as electroactive materials-the relationship between the ratio of charge to thermochemical radius of anions and the potentiometric selectivity coefficient. Chin. J. Anal. Chem. 1983, 11, 81–83. [Google Scholar]
- Sun, X.-L.; Zhou, W.; Gu, L.; Qiu, D.; Ren, D.-H.; Gu, Z.-G.; Li, Z. Liquid–liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2′-binaphthyldiyl-17-crown-5. J. Nucl. Sci. Technol. 2014, 52, 332–341. [Google Scholar] [CrossRef]
- Ma, C.; Laaksonen, A.; Liu, C.; Lu, X.; Ji, X. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem. Soc. Rev. 2018, 47, 8685–8720. [Google Scholar] [CrossRef]
- Doidge, E.D.; Carson, I.; Love, J.B.; Morrison, C.A.; Tasker, P.A. The influence of the hofmeister bias and the stability and speciation of chloridolanthanates on their extraction from chloride media. Solvent Extr. Ion Exch. 2016, 34, 579–593. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, D.; Li, L.; Peng, X.; Song, F.; Rui, H. Solvent extraction of lithium from ammoniacal solution using thenoyltrifluoroacetone and neutral ligands. J. Mol. Liq. 2019, 274, 746–751. [Google Scholar] [CrossRef]
- Swain, B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: A review. J. Chem. Technol. Biotechnol. 2016, 91, 2549–2562. [Google Scholar] [CrossRef]
- Ananyev, A.V.; Tsarenko, N.A.; Strelnikova, A.M.; Koshcheev, A.M.; Tsivadze, A.Y. Extraction of cesium by crown ethers in the presence of activating additives. Russ. Chem. Bull. 2014, 63, 1308–1311. [Google Scholar] [CrossRef]
- Hu, N.; Yu, J.; Hou, L.; Shi, C.; Li, K.; Hang, F.; Xie, C. Amine-functionalized MOF-derived carbon materials for efficient removal of congo red dye from aqueous solutions: Simulation and adsorption studies. RSC Adv. 2023, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
Material | Density [g/cm3] | Viscosity [mPa · s] |
---|---|---|
HTTA | 1.33 | —(Solid) |
TOPO | 0.86 | —(Solid) |
DES | 1.12 | 28.13 |
Material | Bond Dissociation Energy (BDE)/A.U |
---|---|
HTTA (1) | −1195.2180854 |
HTTA (2) | −1195.2380293 |
TOPO | −1361.6683986 |
DES | −3752.2033977 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Xie, M.; Tang, T.; Yang, F.; Xue, L.; Jiang, Z. β-Diketone-Driven Deep Eutectic Solvent for Ultra-Efficient Natural Stable Lithium-7 Isotope Separation. Separations 2023, 10, 111. https://doi.org/10.3390/separations10020111
Xie Z, Xie M, Tang T, Yang F, Xue L, Jiang Z. β-Diketone-Driven Deep Eutectic Solvent for Ultra-Efficient Natural Stable Lithium-7 Isotope Separation. Separations. 2023; 10(2):111. https://doi.org/10.3390/separations10020111
Chicago/Turabian StyleXie, Zexing, Meiying Xie, Tingting Tang, Fan Yang, Liyan Xue, and Zhengming Jiang. 2023. "β-Diketone-Driven Deep Eutectic Solvent for Ultra-Efficient Natural Stable Lithium-7 Isotope Separation" Separations 10, no. 2: 111. https://doi.org/10.3390/separations10020111
APA StyleXie, Z., Xie, M., Tang, T., Yang, F., Xue, L., & Jiang, Z. (2023). β-Diketone-Driven Deep Eutectic Solvent for Ultra-Efficient Natural Stable Lithium-7 Isotope Separation. Separations, 10(2), 111. https://doi.org/10.3390/separations10020111