Latent Variable Statistical Methods for Longitudinal Studies of Multi-Dimensional Health and Education Data: A Scoping Review
Abstract
1. Introduction
1.1. Rationale
1.2. Objective
- Which latent variable statistical methods have been applied in longitudinal studies of multi-dimensional health and education data?
- Among those methods found, which methods are appropriate to identify predictors of long-term educational outcomes?
- Among those methods found, which methods are appropriate to detect trajectories or pathways over time that lead to better or worse than expected educational outcomes?
2. Methods
2.1. Eligibility Criteria
2.1.1. Participants
2.1.2. Concept
2.1.3. Context
2.2. Information Sources and Search
2.3. Selection of Sources of Evidence
2.4. Data Charting
2.5. Synthesis of Results
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Results of Included Studies
3.4. Synthesis of Results
4. Discussion
4.1. Summary
4.2. Variable-Oriented Modelling: For Researchers Aiming to Find Predictors of Long-Term Outcomes
4.3. Person-Oriented Modelling: For Researchers Aiming to Identify Differential Trajectories
4.4. Limitations
4.5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
CHYLD | Children with Hypoglycaemia and Their Later Development |
CLPM | cross-lagged panel model |
EM | expectation maximisation |
FIML | full information maximum likelihood |
FOCUS | factor of curves |
GMM | growth mixture models |
GBMT | group-based multi-trajectory model |
HMM | hidden Markov model |
LGM | latent growth curve modelling |
LTA | latent transition analysis models |
MICE | multiple imputation by chained equations |
Piecewise LGM | piecewise linear growth curve models |
PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews |
RI-CLPM | random-intercept cross-lagged panel model |
SEM | structural equation modelling |
References
- Ali, S., & Bouguila, N. (2022). A road map to hidden Markov models and a review of its application in occupancy estimation. In N. Bouguila, W. Fan, & M. Amayri (Eds.), Hidden Markov models and applications (pp. 1–32). Springer International Publishing. [Google Scholar] [CrossRef]
- Ansell, J. M., Wouldes, T. A., Harding, J. E., & on behalf of the CHYLD Study group. (2017). Executive function assessment in New Zealand 2-year olds born at risk of neonatal hypoglycemia. PLoS ONE, 12(11), e0188158. [Google Scholar] [CrossRef]
- Baldwin, E. E. (2015). A Monte Carlo simulation study examining statistical power in latent transition analysis [Ph.D. thesis, University of California]. Available online: https://www.proquest.com/docview/1725906968/abstract/FC68243492A04E89PQ/1 (accessed on 20 June 2024).
- Bartolucci, F., Pandolfi, S., & Pennoni, F. (2017). LMest: An R package for latent Markov models for longitudinal categorical data. Journal of Statistical Software, 81, 1–38. [Google Scholar] [CrossRef]
- Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8(3), 338–363. [Google Scholar] [CrossRef]
- Boker, S. M., Neale, M. C., Maes, H. H., Wilde, M. J., Spiegel, M., Brick, T. R., Estabrook, R., Bates, T. C., Mehta, P., von Oertzen, T., Gore, R. J., Hunter, M. D., Hackett, D. C., Karch, J., Brandmaier, A. M., Pritikin, J. N., Zahery, M., Kirkpatrick, R. M., Wang, Y., … Niesen, J. (2025). OpenMX: Extended structural equation modelling (Version 2.22.7) [Computer software]. Available online: https://cran.r-project.org/web/packages/OpenMx/index.html (accessed on 11 August 2025).
- Bollen, K. A. (2020). Structural equations with latent variables. J. Wiley. [Google Scholar]
- Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Wiley-Interscience. [Google Scholar] [CrossRef]
- Brown, G. T. L., & Peterson, E. (2018). Evaluating repeated diary study responses: Latent curve modeling: Vol. SAGE research methods cases part 2. SAGE Publications, Ltd. [Google Scholar] [CrossRef]
- Cezard, G., McHale, C. T., Sullivan, F., Bowles, J. K. F., & Keenan, K. (2021). Studying trajectories of multimorbidity: A systematic scoping review of longitudinal approaches and evidence. BMJ Open, 11(11), e048485. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J., MacKinnon, D. P., & Khoo, S. T. (2003). Investigation of mediational processes using parallel process latent growth curve modeling. Structural Equation Modeling: A Multidisciplinary Journal, 10(2), 238–262. [Google Scholar] [CrossRef]
- Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social behavioral, and health sciences. Wiley. [Google Scholar]
- Corporation for Digital Scholarship. (2023). Zotero (Version 6.0.26) [Computer software]. (Original work published 2006). Available online: https://www.zotero.org/ (accessed on 12 May 2023).
- Cosco, T. D., Kaushal, A., Hardy, R., Richards, M., Kuh, D., & Stafford, M. (2017). Operationalising resilience in longitudinal studies: A systematic review of methodological approaches. Journal of Epidemiology and Community Health, 71(1), 98. [Google Scholar] [CrossRef] [PubMed]
- Curran, P. J., Obeidat, K., & Losardo, D. (2010). Twelve frequently asked questions about growth curve modeling. Journal of Cognition and Development, 11(2), 121–136. [Google Scholar] [CrossRef] [PubMed]
- Dai, D. W. T., Wouldes, T. A., Brown, G. T. L., Tottman, A. C., Alsweiler, J. M., Gamble, G. D., & Harding, J. E. (2020). Relationships between intelligence, executive function and academic achievement in children born very preterm. Early Human Development, 148, 105122. [Google Scholar] [CrossRef]
- Enders, C. K. (2022). Applied missing data analysis, second edition (2nd ed.). Guilford Press. [Google Scholar]
- Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd ed). Wiley. [Google Scholar]
- Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378–382. [Google Scholar] [CrossRef]
- Frees, E. W. (2004). Longitudinal and panel data: Analysis and applications in the social sciences. Cambridge University Press. [Google Scholar]
- Grimm, K. J., Ram, N., & Estabrook, R. (2016). Growth modeling: Structural equation and multilevel modeling approaches. Guilford Publications. [Google Scholar]
- Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20(1), 102–116. [Google Scholar] [CrossRef]
- Harwell, M., Maeda, Y., Bishop, K., & Xie, A. (2017). The surprisingly modest relationship between SES and educational achievement. The Journal of Experimental Education, 85(2), 197–214. [Google Scholar] [CrossRef]
- Hicks, T. A., & Knollman, G. A. (2015). Secondary analysis of national longitudinal transition study 2 data: A statistical review. Career Development and Transition for Exceptional Individuals, 38(3), 182–190. [Google Scholar] [CrossRef]
- Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change (1st ed.). Routledge, Taylor & Francis Group. [Google Scholar]
- Ip, E. H., Marshall, S. A., Arcury, T. A., Suerken, C. K., Trejo, G., Skelton, J. A., & Quandt, S. A. (2018). Child feeding style and dietary outcomes in a cohort of latino farmworker families. Journal of the Academy of Nutrition and Dietetics, 118(7), 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Isiordia, M., Conger, R., Robins, R. W., & Ferrer, E. (2017). Using the factor of curves model to evaluate associations among multiple family constructs over time. Journal of Family Psychology: JFP: Journal of the Division of Family Psychology of the American Psychological Association (Division 43), 31(8), 1017–1028. [Google Scholar] [CrossRef]
- Jones, B. L. (2023). Traj: Group-based modeling of longitudinal data. Available online: https://www.andrew.cmu.edu/user/bjones/index.htm (accessed on 10 December 2024).
- Ju, S., & Lee, Y. (2018). Developmental trajectories and longitudinal mediation effects of self-esteem, peer attachment, child maltreatment and depression on early adolescents. Child Abuse & Neglect, 76, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Katsantonis, I., & Symonds, J. E. (2023). Population heterogeneity in developmental trajectories of internalising and externalising mental health symptoms in childhood: Differential effects of parenting styles. Epidemiology and Psychiatric Sciences, 32, e16. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y. (2013). Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 38(1), 52–54. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y. (2012). Sample size requirements in single- and multiphase growth mixture models: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 19(3), 457–476. [Google Scholar] [CrossRef]
- Kim, S.-Y. (2014). Determining the number of latent classes in single- and multiphase growth mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 21(2), 263–279. [Google Scholar] [CrossRef]
- Kim, S. W., Cho, H., & Kim, L. Y. (2019). Socioeconomic status and academic outcomes in developing countries: A meta-analysis. Review of Educational Research, 89(6), 875–916. [Google Scholar] [CrossRef]
- King, B. M., Rosopa, P. J., & Minium, E. W. (2018). Statistical reasoning in the behavioral sciences (7th ed.). Wiley. [Google Scholar]
- Kline, R. B. (2023). Principles and practice of structural equation modeling (5th ed.). Guilford Publications. [Google Scholar]
- Kulkarni, T., Sullivan, A. L., & Kim, J. (2021). Externalizing behavior problems and low academic achievement: Does a causal relation exist? Educational Psychology Review, 33(3), 915–936. [Google Scholar] [CrossRef]
- Lee, D. Y., & Harring, J. R. (2023). Handling missing data in growth mixture models. Journal of Educational and Behavioral Statistics, 48(3), 320–348. [Google Scholar] [CrossRef]
- Lim, L. S. H., Pullenayegum, E., Moineddin, R., Gladman, D. D., Silverman, E. D., & Feldman, B. M. (2017). Methods for analyzing observational longitudinal prognosis studies for rheumatic diseases: A review & worked example using a clinic-based cohort of juvenile dermatomyositis patients. Pediatric Rheumatology, 15(1), 18. [Google Scholar] [CrossRef]
- Liu, J., & Perera, R. A. (2023). Assessing mediational processes using piecewise linear growth curve models with individual measurement occasions. Behavior Research Methods, 55(6), 3218–3240. [Google Scholar] [CrossRef]
- Lucas, R. E. (2023). Why the cross-lagged panel model is almost never the right choice. Advances in Methods and Practices in Psychological Science, 6(1), 25152459231158378. [Google Scholar] [CrossRef]
- Lüdtke, O., & Robitzsch, A. (2021). A critique of the random intercept cross-lagged panel model. PsyArXiv. [Google Scholar] [CrossRef]
- Majewska, R., Jabłońska, K., Młynarczyk, D., Briere, J. B., Bowrin, K., & Millier, A. (2019). PNS322 Review of methodological approaches to analyse longitudinal utility data. Value in Health, 22, S818. [Google Scholar] [CrossRef]
- Martinez-Huertas, J. A., & Ferrer, E. (2023). Mixed-effects models with crossed random effects for multivariate longitudinal data. Structural Equation Modeling, 30(1), 105–122. [Google Scholar] [CrossRef]
- Matingwina, T. (2018). Health, academic achievement and school-based interventions. In B. Bernal-Morales (Ed.), Health and academic achievement. IntechOpen. [Google Scholar] [CrossRef]
- Mayer, R. E. (2020). Intelligence and achievement. In R. J. Sternberg (Ed.), The Cambridge Handbook of Intelligence (2nd ed., pp. 1048–1060). Cambridge University Press. [Google Scholar] [CrossRef]
- McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade, & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (pp. 561–614). Springer. [Google Scholar] [CrossRef]
- McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60(1), 577–605. [Google Scholar] [CrossRef] [PubMed]
- McArdle, J. J., & Nesselroade, J. R. (2014). Longitudinal data analysis using structural equation models. American Psychological Association. Available online: https://psycnet.apa.org/record/2014-09354-000 (accessed on 19 June 2024).
- McKinlay, C. J. D., Alsweiler, J. M., Ansell, J. M., Anstice, N. S., Chase, J. G., Gamble, G. D., Harris, D. L., Jacobs, R. J., Jiang, Y., Paudel, N., Signal, M., Thompson, B., Wouldes, T. A., Yu, T.-Y., & Harding, J. E. (2015). Neonatal glycemia and neurodevelopmental outcomes at 2 years. The New England Journal of Medicine, 373(16), 1507–1518. [Google Scholar] [CrossRef]
- McKinlay, C. J. D., Alsweiler, J. M., Anstice, N. S., Burakevych, N., Chakraborty, A., Chase, J. G., Gamble, G. D., Harris, D. L., Jacobs, R. J., Jiang, Y., Paudel, N., San Diego, R. J., Thompson, B., Wouldes, T. A., & Harding, J. E. (2017). Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 years. JAMA Pediatrics, 171(10), 972–983. [Google Scholar] [CrossRef]
- Michael, Y. L., Senerat, A. M., Buxbaum, C., Ezeanyagu, U., Hughes, T. M., Hayden, K. M., Langmuir, J., Besser, L. M., Sánchez, B., & Hirsch, J. A. (2024). Systematic review of longitudinal evidence and methodologies for research on neighborhood characteristics and brain health. Public Health Reviews, 45, 1606677. [Google Scholar] [CrossRef]
- Mody, A., Tram, K. H., Glidden, D. V., Eshun-Wilson, I., Sikombe, K., Mehrotra, M., Pry, J. M., & Geng, E. H. (2021). Novel longitudinal methods for assessing retention in care: A synthetic review. Current HIV/AIDS Reports, 18(4), 299–308. [Google Scholar] [CrossRef]
- Morin, A. J. S., Gallagher, D. G., Meyer, J. P., Litalien, D., & Clark, P. F. (2021). Investigating the dimensionality and stability of union commitment profiles over a 10-year period: A latent transition analysis. ILR Review, 74(1), 224–254. [Google Scholar] [CrossRef]
- Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. E. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 345–368). Sage. [Google Scholar]
- Muthén, L. K., & Muthén, B. O. (1998). Mplus user’s guide (8th ed.). Muthén & Muthén. [Google Scholar]
- Nagin, D. S. (2005). Group-based modeling of development (1st ed.). Harvard University Press. [Google Scholar] [CrossRef]
- Nagin, D. S., Jones, B. L., & Elmer, J. (2024). Recent advances in group-based trajectory modeling for clinical research. Annual Review of Clinical Psychology, 20(1), 285–305. [Google Scholar] [CrossRef] [PubMed]
- Nagin, D. S., Jones, B. L., Passos, V. L., & Tremblay, R. E. (2018). Group-based multi-trajectory modeling. Statistical Methods in Medical Research, 27(7), 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analysis. Translational Issues in Psychological Science, 4(4), 440–461. [Google Scholar] [CrossRef]
- Nylund-Gibson, K., Garber, A. C., Carter, D. B., Chan, M., Arch, D. A. N., Simon, O., Whaling, K., Tartt, E., & Lawrie, S. I. (2023). Ten frequently asked questions about latent transition analysis. Psychological Methods, 28(2), 284–300. [Google Scholar] [CrossRef]
- Olawade, D. B., Wada, O. J., David-Olawade, A. C., Kunonga, E., Abaire, O., & Ling, J. (2023). Using artificial intelligence to improve public health: A narrative review. Frontiers in Public Health, 11, 1196397. [Google Scholar] [CrossRef]
- Proust-Lima, C., Philipps, V., & Liquet, B. (2017). Estimation of extended mixed models using latent classes and latent processes: The R package lcmm. Journal of Statistical Software, 78, 1–56. [Google Scholar] [CrossRef]
- Reboussin, B. A., Reboussin, D. M., Liang, K.-Y., & Anthony, J. C. (1998). Latent transition modeling of progression of health-risk behavior. Multivariate Behavioral Research, 33(4), 457–478. [Google Scholar] [CrossRef]
- Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. [Google Scholar] [CrossRef]
- Sampson, R. J., Laub, J. H., & Eggleston, E. P. (2004). On the robustness and validity of groups. Journal of Quantitative Criminology, 20(1), 37–42. [Google Scholar] [CrossRef]
- Savalei, V., & Bentler, P. M. (2009). A two-stage approach to missing data: Theory and application to auxiliary variables. Structural Equation Modeling: A Multidisciplinary Journal, 16(3), 477–497. [Google Scholar] [CrossRef]
- Shah, R., Brown, G. T. L., Keegan, P., Harding, J. E., McKinlay, C. J. D., & CHYLD Study Group. (2021). School readiness screening and educational achievement at 9–10 years of age. Journal of Paediatrics and Child Health, 57(12), 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Shah, R., Dai, D. W. T., Alsweiler, J. M., Brown, G. T. L., Chase, J. G., Gamble, G. D., Harris, D. L., Keegan, P., Nivins, S., Wouldes, T. A., Thompson, B., Turuwhenua, J., Harding, J. E., McKinlay, C. J. D., & Children with Hypoglycaemia and Their Later Development (CHYLD) Study Team. (2022). Association of neonatal hypoglycemia with academic performance in mid-childhood. JAMA, 327(12), 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F., Awtrey, E., Bahník, Š., Bai, F., Bannard, C., Bonnier, E., Carlsson, R., Cheung, F., Christensen, G., Clay, R., Craig, M. A., Dalla Rosa, A., Dam, L., Evans, M. H., Flores Cervantes, I., … Nosek, B. A. (2018). Many analysts, one data set: Making transparent how variations in analytic choices affect results. Advances in Methods and Practices in Psychological Science, 1(3), 337–356. [Google Scholar] [CrossRef]
- Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. Oxford University Press. [Google Scholar]
- Song, X., Xia, Y., & Zhu, H. (2017). Hidden Markov latent variable models with multivariate longitudinal data. Biometrics, 73(1), 313–323. [Google Scholar] [CrossRef]
- Stahlschmidt, S., & Stephen, D. (2020). Comparison of Web of Science, Scopus and Dimensions databases (KB Forschungspoolprojekt 2020). Available online: https://bibliometrie.info/downloads/DZHW-Comparison-DIM-SCP-WOS.PDF (accessed on 28 November 2024).
- Stanley, C. C., Kazembe, L. N., Mukaka, M., Otwombe, K. N., Buchwald, A. G., Hudgens, M. G., Mathanga, D. P., Laufer, M. K., & Chirwa, T. F. (2019). Systematic review of analytical methods applied to longitudinal studies of malaria. Malaria Journal, 18(1), 254. [Google Scholar] [CrossRef]
- Stevens, D., Lane, D. A., Harrison, S. L., Lip, G. Y. H., & Kolamunnage-Dona, R. (2021). Modelling of longitudinal data to predict cardiovascular disease risk: A methodological review. BMC Medical Research Methodology, 21(1), 283. [Google Scholar] [CrossRef]
- Taherian, T., Fazilatfar, A. M., & Mazdayasna, G. (2021). Joint growth trajectories of trait emotional intelligence subdomains among L2 language learners: Estimating a second-order factor-of-curves model with emotion perception. Frontiers in Psychology, 12, 720945. [Google Scholar] [CrossRef]
- Timman, R., Stijnen, T., & Tibben, A. (2004). Methodology in longitudinal studies on psychological effects of predictive DNA testing: A review. Journal of Medical Genetics, 41(7), e100. [Google Scholar] [CrossRef]
- Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. [Google Scholar] [CrossRef]
- Vermunt, J. K., & Magidson, J. (2005). Latent GOLD 4.0 user’s guide. Statistical Innovations Inc. Available online: https://www.statisticalinnovations.com/wp-content/uploads/LGusersguide.pdf (accessed on 11 December 2024).
- Visser, I., & Speekenbrink, M. (2010). depmixs4: An R package for hidden Markov models. Journal of Statistical Software, 36(7). [Google Scholar] [CrossRef]
- Wake Forest School of Medicine. (2020, October 26). Dynamic Multichain Graphical Modeling Tool. Available online: http://dmgm.wfuhs.arane.us/ (accessed on 11 December 2024).
- Wang, J., & Li, J. (2024). Artificial intelligence empowering public health education: Prospects and challenges. Frontiers in Public Health, 12, 1389026. [Google Scholar] [CrossRef]
- Wang, Y.-G., Fu, L., & Paul, S. (2022). Analysis of longitudinal data with examples (1st ed., Vol. 1). CRC Press. [Google Scholar] [CrossRef]
- Wildeboer, A., Thijssen, S., van IJzendoorn, M. H., van der Ende, J., Jaddoe, V. W. V., Verhulst, F. C., Hofman, A., White, T., Tiemeier, H., & Bakermans-Kranenburg, M. J. (2015). Early childhood aggression trajectories: Associations with teacher-reported problem behaviour. International Journal of Behavioral Development, 39(3), 221–234. [Google Scholar] [CrossRef]
- Yarnell, L. M., Pasch, K. E., Perry, C. L., & Komro, K. A. (2018). Multiple risk behaviors among African American and Hispanic boys. Journal of Early Adolescence, 38(5), 681–713. [Google Scholar] [CrossRef]
- Yuan, K.-H. (2009). Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis. Journal of Multivariate Analysis, 100(9), 1900–1918. [Google Scholar] [CrossRef]
- Yucel, R. M. (2008). Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 366(1874), 2389–2403. [Google Scholar]
- Zucchini, W., MacDonald, I. L., & Langrock, R. (2016). Hidden Markov models for time series: An introduction using R (2nd ed.). Chapman and Hall/CRC. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Publication | Peer-reviewed journal articles, doctoral theses, and book chapters with full text available; health and education paper. | Grey literature; full text not available. |
Years of publication | No date restrictions. | None. |
Language | Accessible in English. | Not accessible in English. |
Study design | Longitudinal quantitative studies. | Cross-sectional studies; review articles. |
Methodology | Multi-variate analysis; latent variables analysis. | Univariate or bivariate analysis; manifest variable analysis only. |
Participants | Humans (<12 years); mixed-age studies: children under 12 > 40% of cohort; multi-wave studies: at least one time point under 12. | Humans (12+ years); mixed-age studies: children under 12 < 40% of cohort; non-human data. |
Author(s) (Year) | Context | Country | Baseline Age (Years) | N | Follow-Up Period (Years) | Data Waves | Wave Interval (Years) | Scale Data Type | Software or Package |
---|---|---|---|---|---|---|---|---|---|
Liu and Perera (2023) | Education | United States | 5 | 400 | 5.5 | 9 | 0.5–1 | Continuous | R package OpenMx v 2.21.8 |
Katsantonis and Symonds (2023) | Health and education | Ireland | 3 | 7507 | 6 | 3 | 2–4 | Ordinal; continuous | Mplus v8.7 |
Yarnell et al. (2018) | Health and education | United States | 11.8 (mean) | 502 | 2.5 | 4 | 0.5–1 | Nominal | Mplus v7 |
Nagin et al. (2018) | Health | New Zealand; Canada | 3; 6 | 535 1037 | 35; 11 | 6–11 5 | 4–8; 1–4 | Ordinal; continuous | Stata SAS platform |
Ju and Lee (2018) | Health and education | Korea | Grade 5 | 2707 | 4 | 4 | 1 | Ordinal | Not mentioned |
Ip et al. (2018) | Health | United States | 2.5–3.5 | 237 | 2 | 3 | 1 | Ordinal | MATLAB-based HMM software |
Isiordia et al. (2017) | Education | United States | 10.8 (mean) | 674 | 6 | 4 | 2 | Ordinal | R v3.0.2 lavaan package |
Wildeboer et al. (2015) | Education | Netherlands | 6.57 (mean) | 4781 | 4.5 | 3 | 1.5–3 | Ordinal | Mplus v7 |
Reboussin et al. (1998) | Health and education | United States | 8–11 | 786 | 5 | 5 | 1 | Nominal | Fortran |
Author(s) (Year) | Statistical Method | Purpose of the Method |
---|---|---|
Ju and Lee (2018) | Latent growth curve modelling (LGM) |
|
Isiordia et al. (2017) | Latent growth curve modelling (LGM) |
|
Factor of curves (FOCUS) |
| |
Liu and Perera (2023) | Piecewise linear growth curve models (Piecewise LGM) | To understand the longitudinal mediational processes among students’ reading, mathematics, and science ability |
Katsantonis and Symonds (2023) | Growth mixture models (GMM) | To examine the differential effects of parent styles on population heterogeneity in the joint developmental trajectories of children’s internalising and externalising mental health symptoms |
Wildeboer et al. (2015) | Growth mixture models (GMM) |
|
Nagin et al. (2018) | Group-based multi-trajectory modelling (GBMT) |
|
Ip et al. (2018) | Hidden Markov model (HMM) |
|
Yarnell et al. (2018) | Latent transition analysis models (LTA) | To identify patterns of multiple risk behaviours (violence, delinquency, substance use) among African American and Hispanic boys over time |
Reboussin et al. (1998) | Latent transition analysis models (LTA) | To identify latent health-risk states and the transition of those states over time |
Group | Group Name | Statistical Method | Research Objective |
---|---|---|---|
1 | Variable-oriented modelling | Latent growth curve modelling (LGM) Factor of curves (FOCUS) Piecewise linear growth curve models (Piecewise LGM) | Identifying predictors of long-term outcome |
2 | Person-oriented modelling | Growth mixture models (GMM) Group-based multi-trajectory modelling (GBMT) Hidden Markov model (HMM) Latent transition analysis models (LTA) | Detecting trajectories of subpopulation to differential outcomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the University Association of Education and Psychology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.; Harding, J.E.; Brown, G.T.L. Latent Variable Statistical Methods for Longitudinal Studies of Multi-Dimensional Health and Education Data: A Scoping Review. Eur. J. Investig. Health Psychol. Educ. 2025, 15, 173. https://doi.org/10.3390/ejihpe15090173
Hong M, Harding JE, Brown GTL. Latent Variable Statistical Methods for Longitudinal Studies of Multi-Dimensional Health and Education Data: A Scoping Review. European Journal of Investigation in Health, Psychology and Education. 2025; 15(9):173. https://doi.org/10.3390/ejihpe15090173
Chicago/Turabian StyleHong, Meiyang, Jane E. Harding, and Gavin T. L. Brown. 2025. "Latent Variable Statistical Methods for Longitudinal Studies of Multi-Dimensional Health and Education Data: A Scoping Review" European Journal of Investigation in Health, Psychology and Education 15, no. 9: 173. https://doi.org/10.3390/ejihpe15090173
APA StyleHong, M., Harding, J. E., & Brown, G. T. L. (2025). Latent Variable Statistical Methods for Longitudinal Studies of Multi-Dimensional Health and Education Data: A Scoping Review. European Journal of Investigation in Health, Psychology and Education, 15(9), 173. https://doi.org/10.3390/ejihpe15090173