Catalytic Oxidation of Heavy Residual Oil by Pulsed Nuclear Magnetic Resonance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.3. Analysis
3. Results and Discussion
3.1. Component Composition and Properties of HRO Oxidation Products
3.2. Investigation of the Component Composition of the HRO Oxidation Products Using Pulsed NMR
- At least two-times difference of relaxation time T2i of phases,
- No substantial changes in the values of proton concentration P2i of phases in a fairly wide temperature range.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gridneva, E.S.; Bulychev, N.A. Improving the quality of petroleum products by ultrasonic action. Chem. Pet. Eng. 2012, 48, 223–227. [Google Scholar] [CrossRef]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593–609. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Polacco, G.; Stastna, J.; Biondi, D.; Zanzotto, L. Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Curr. Opin. Colloid Interface Sci. 2006, 11, 230–245. [Google Scholar] [CrossRef]
- Pokonova, Y.V. Petroleum Bitumen; Sintez: Saint-Petersburgh, Russia, 2005. [Google Scholar]
- Lakhova, A.I.; Petrov, S.M.; Zakieva, R.R.; Ibragimova, D.A.; Baibekova, L.R.; Isakov, D.R. Impact of the Group Content on the Properties of Bitumen of Different Grades. Res. J. Appl. Sci. 2015, 10, 917–921. [Google Scholar] [CrossRef]
- Baibekova, L.R.; Petrov, S.; Mukhamatdinov, I.; Burnina, M.A. Polymer Additive Influence on Composition and Properties of Bitumen Polymer Compound. Int. J. Appl. Chem. 2015, 11, 593–599. [Google Scholar]
- Silva, S.L.; Silva, A.M.S.; Ribeiro, J.C.; Martins, F.G.; Da Silva, F.A.; Silva, C.M. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review. Anal. Chim. Acta 2011, 707, 18–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Bai, L.; Chi, Y.; Jia, R.; Fu, X.; Yang, L. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: A case study from the Qingshankou Formation in Southern Songliao Basin, northeast China. Mar. Pet. Geol. 2019, 109, 561–573. [Google Scholar] [CrossRef]
- Ramirez, D.; Kowalczyk, R.M.; Collins, C.D. Characterisation of oil sludges from different sources before treatment: High-field nuclear magnetic resonance (NMR) in the determination of oil and water content. J. Pet. Sci. Eng. 2019, 174, 729–737. [Google Scholar] [CrossRef]
- Morgan, V.G.; Bastos, T.M.; Sad, C.M.S.; Leite, J.S.D.; Castro, E.R.V.; Barbosa, L.L. Application of low-field nuclear magnetic resonance to assess the onset of asphaltene precipitation in petroleum. Fuel 2020, 265, 116955. [Google Scholar] [CrossRef]
- Vashman, A.A.; Pronin, I.S. Nuclear Magnetic Relaxation and Its Application in Chemical Physics; Nauka: Moscow, Russia, 1979. [Google Scholar]
- Kashaev, R.S. Science and education development on the base of interdiciplinary approach to use of fundamental and universal method of nuclear magnetic resonance (NMR). Adv. Curr. Nat. Sci. 2011, 2, 82–87. [Google Scholar]
- Maklakov, A.I.; Dvoyashkin, N.K.; Tyurin, V.A. Nuclear magnetic resonance: The study of porous media and fluids injected into them. Georesursy 2001, 1, 28–30. [Google Scholar]
- Petrov, S.M. Multifunctional Modifiers for Obtaining Oxidized Road Bitumen with Improved Properties; Kazan State Technological University: Kazan, Russia, 2009. [Google Scholar]
Oxidation Time, min | HC, %mass. | Resins, %mass. | Asphaltenes, %mass. | Viscosity, cP, at 20 °C | Determination of the Softening Point, °C |
---|---|---|---|---|---|
HRO | |||||
0 | 76.0 | 18.2 | 5.8 | 143.6 | 27.0 |
Products of oxidation of HRO | |||||
60 | 73.7 | 19.5 | 6.8 | 166.5 | 29.5 |
120 | 71.3 | 19.9 | 7.8 | 208.26 | 33.0 |
180 | 70.1 | 21.8 | 8.7 | 280.43 | 35.8 |
240 | 69.9 | 22.6 | 9.6 | 377.28 | 39.5 |
300 | 67.6 | 22.3 | 10.5 | 406.3 | 43.2 |
360 | 66.4 | 22.2 | 11.4 | 634.5 | 47.0 |
540 | 61.5 | 23.5 | 15.0 | 1148.11 | 57.0 |
Products of catalytic oxidation of HRO | |||||
60 | 58.7 | 31.2 | 10.1 | 328.77 | 33.2 |
120 | 60.3 | 28.7 | 11.0 | 475.97 | 39.0 |
180 | 52.0 | 34.2 | 13.8 | 661.65 | 46.1 |
240 | 51.8 | 34.3 | 13.9 | 994.37 | 53.8 |
300 | 52.2 | 33.8 | 14.0 | 1119.2 | 62.5 |
EN 12,591 (70/100) | - | - | - | - | 43–51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakhin, A.V.; Cherkasova, E.I.; Safiulina, A.G.; Islamova, G.G.; Petrov, S.M.; Bashkirtseva, N.Y. Catalytic Oxidation of Heavy Residual Oil by Pulsed Nuclear Magnetic Resonance. Processes 2021, 9, 158. https://doi.org/10.3390/pr9010158
Vakhin AV, Cherkasova EI, Safiulina AG, Islamova GG, Petrov SM, Bashkirtseva NY. Catalytic Oxidation of Heavy Residual Oil by Pulsed Nuclear Magnetic Resonance. Processes. 2021; 9(1):158. https://doi.org/10.3390/pr9010158
Chicago/Turabian StyleVakhin, Alexey V., Elena I. Cherkasova, Aliya G. Safiulina, Galiya G. Islamova, Sergey M. Petrov, and Natalya Yu. Bashkirtseva. 2021. "Catalytic Oxidation of Heavy Residual Oil by Pulsed Nuclear Magnetic Resonance" Processes 9, no. 1: 158. https://doi.org/10.3390/pr9010158