Au-Pd Bimetallic Nanocatalysts Incorporated into Carbon Nanotubes (CNTs) for Selective Oxidation of Alkenes and Alcohol
Abstract
1. Introduction
2. Materials and Methods
2.1. CNTs Functionalizations
2.2. Catalyst Preparation
2.3. Catalyst Testing
2.4. Catalyst Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Somorjai, G.A.; Li, Y. Introduction to Surface Chemistry and Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Guo, S.; Zhang, S.; Sun, S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 8526–8544. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. [Google Scholar] [CrossRef] [PubMed]
- Somorjai, G.A.; Frei, H.; Park, J.Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 2009, 131, 16589–16605. [Google Scholar] [CrossRef]
- Bukhtiyarov, A.; Prosvirin, I.; Saraev, A.; Klyushin, A.Y.; Knop-Gericke, A.; Bukhtiyarov, V. In situ formation of the active sites in Pd–Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study. Faraday Discuss. 2018, 208, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Guo, Q.; Sun, Y.; Chen, S.; Wang, J.-Q.; Wu, M.; Fu, W.; Tang, Y.; Duan, X.; Chen, D.; et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Kumar, D.; Yi, C.-W.; Goodman, D.W. The promotional effect of gold in catalysis by palladium-gold. Science 2005, 310, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; White, T.; Li, P.; He, C.; Yu, J.; Yuan, W.; Han, Y.F. Biphasic Pd−Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc. 2010, 132, 10398–10406. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Goodman, D.W. CO/NO and CO/NO/O2 reactions over a Au–Pd single crystal catalyst. J. Catal. 2009, 268, 115–121. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Goodman, D.W. CO Oxidation over AuPd(100) from Ultrahigh Vacuum to Near-Atmospheric Pressures: The Critical Role of Contiguous Pd Atoms. J. Am. Chem. Soc. 2009, 131, 5734–5735. [Google Scholar] [CrossRef]
- Herzing, A.A.; Kiely, C.J.; Carley, A.F.; Landon, P.; Hutchings, G.J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321, 1331–1335. [Google Scholar] [CrossRef]
- Cao, L.; Liu, W.; Luo, Q.; Yin, R.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z.; et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634. [Google Scholar] [CrossRef]
- Alayoglu, S.; Tao, F.; Altoe, V.; Specht, C.; Zhu, Z.; Aksoy, F.; Butcher, D.R.; Renzas, R.J.; Liu, Z.; Somorjai, G.A. Surface composition and catalytic evolution of AuxPd1−x(x= 0.25, 0.50 and 0.75) nanoparticles under CO/O2 reaction in torr pressure regime and at 200 C. Catal. Lett. 2011, 141, 633–640. [Google Scholar] [CrossRef]
- Liu, C.-H.; Liu, R.-H.; Sun, Q.-J.; Chang, J.-B.; Gao, X.; Liu, Y.; Lee, S.-T.; Kang, Z.-H.; Wang, S.-D. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale 2015, 7, 6356–6362. [Google Scholar] [CrossRef] [PubMed]
- Zugic, B.; Wang, L.C.; Heine, C.; Zakharov, D.N.; Lechner, B.A.J.; Stach, E.A.; Biener, J.; Salmeron, M.; Madix, R.J.; Friend, C.M. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat. Mater. 2017, 16, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Casanova, O.; Iborra, S.; Corma, A. Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2, 5-dimethylfuroate with gold on nanoparticulated ceria. J. Catal. 2009, 265, 109–116. [Google Scholar] [CrossRef]
- Taarning, E.; Nielsen, I.S.; Egeblad, K.; Madsen, R.; Christensen, C.H. Chemicals from renewables: Aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem Chem. Sustain. Energy Mater. 2008, 1, 75–78. [Google Scholar] [CrossRef]
- Davis, S.E.; Houk, L.R.; Tamargo, E.C.; Datye, A.K.; Davis, R.J. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal. Today 2011, 160, 55–60. [Google Scholar] [CrossRef]
- Prati, L.; Martra, G. New gold catalysts for liquid phase oxidation. Gold Bull. 1999, 32, 96–101. [Google Scholar] [CrossRef]
- Lorençon, E.; Ferreira, D.; Resende, R.; Krambrock, K. Amphiphilic gold nanoparticles supported on carbon nanotubes: Catalysts for the oxidation of lipophilic compounds by wet peroxide in biphasic systems. Appl. Catal. A Gen. 2015, 505, 566–574. [Google Scholar] [CrossRef]
- Jawale, D.V.; Gravel, E.; Geertsen, V.; Li, H.; Shah, N.; Kumar, R.; John, J.; Namboothiri, I.N.N.; Doris, E. Size effect of gold nanoparticles supported on carbon nanotube as catalysts in selected organic reactions. Tetrahedron 2014, 70, 6140–6145. [Google Scholar] [CrossRef]
- Oosthuizen, R.; Nyamori, V. Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions. Platin. Met. Rev. 2011, 55, 154–169. [Google Scholar] [CrossRef]
- Sheldon, R.; Kochi, J. Metal-Catalysed Oxidations of Organic Compounds 1981; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Eder, D. Carbon nanotube−inorganic hybrids. Chem. Rev. 2010, 110, 1348–1385. [Google Scholar] [CrossRef]
- Figueiredo, J.L. Functionalization of porous carbons for catalytic applications. J. Mater. Chem. A 2013, 1, 9351–9364. [Google Scholar] [CrossRef]
- Serp, P.; Figueiredo, J.L. Carbon Materials for Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Wu, B.; Kuang, Y.; Zhang, X.; Chen, J. Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today 2011, 6, 75–90. [Google Scholar] [CrossRef]
- Villa, A.; Schiavoni, M.; Prati, L. Material science for the support design: A powerful challenge for catalysis. Catal. Sci. Technol. 2012, 2, 673–682. [Google Scholar] [CrossRef]
- Alshammari, A.S.; Alenezi, M.R.; Lai, K.T.; Silva, S.R.P. Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties. Mater. Lett. 2017, 189, 299–302. [Google Scholar] [CrossRef]
- Alshammari, A.S.; Shkunov, M.; Silva, S.R.P. Correlation between wetting properties and electrical performance of solution processed PEDOT:PSS/CNT nano-composite thin films. Colloid Polym. Sci. 2014, 292, 661–668. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, B.; Itkis, M.E.; Haddon, R.C. Nitric Acid Purification of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 13838–13842. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Verma, P.; Singh, A.; Chaudhary, P.K.; Harsh; Basu, P.K. Carbon nanotube—Purification and sorting protocols. Def. Sci. J. 2008, 58, 591–599. [Google Scholar] [CrossRef][Green Version]
- Alshammari, H.M.; Humaidi, J.R.; Alhumaimess, M.S.; Aldosari, O.F.; Alotaibi, M.H.; Hassan, H.M.A.; Wawata, I. Bimetallic Au:Pd nanoparticle supported on MgO for the oxidation of benzyl alcohol. React. Kinet. Mech. Catal. 2019, 128, 97–108. [Google Scholar] [CrossRef]
- Alshammari, A.S. Improved electrical stability of silver NWs based hybrid transparent electrode interconnected with polymer functionalized CNTs. Mater. Res. Bull. 2019, 111, 245–250. [Google Scholar] [CrossRef]
- Sadegh, H.; Zare, K.; Maazinejad, B.; Shahryari-Ghoshekandi, R.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal. J. Mol. Liq. 2016, 215, 221–228. [Google Scholar] [CrossRef]
- Lu, S.C.; Wang, X.Y.; Meng, Z.R.; Deng, Q.C.; Peng, F.F.; Yu, C.C.; Hu, X.; Zhao, Y.; Ke, Y.C.; Qi, F.Z. The mechanical properties, microstructures and mechanism of carbon nanotube-reinforced oil well cement-based nanocomposites. RSC Adv. 2019, 9, 26691–26702. [Google Scholar] [CrossRef]
- Feng, M.N.; Pu, Z.J.; Zheng, P.L.; Jia, K.; Liu, X.B. Sulfonated carbon nanotubes synergistically enhanced the proton conductivity of sulfonated polyarylene ether nitriles. RSC Adv. 2015, 5, 34372–34376. [Google Scholar] [CrossRef]
- Xiong, S.; Zhang, L.; Lu, X. Conductivities enhancement of poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) transparent electrodes with diol additives. Polym. Bull. 2013, 70, 237–247. [Google Scholar] [CrossRef]
- Xu, S.; Liu, C.; Xiao, Z.; Zhong, W.; Luo, Y.; Ou, H.; Wiezorek, J. Cooperative effect of carbon black and dimethyl sulfoxide on PEDOT: PSS hole transport layer for inverted planar perovskite solar cells. Sol. Energy 2017, 157, 125–132. [Google Scholar] [CrossRef]
- Ram, J.; Singh, R.G.; Singh, F.; Kumar, V.; Chauhan, V.; Gupta, R.; Kumar, U.; Yadav, B.C.; Kumar, R. Development of WO3-PEDOT: PSS hybrid nanocomposites based devices for liquefied petroleum gas (LPG) sensor. J. Mater. Sci. Mater. Electron. 2019, 30, 13593–13603. [Google Scholar] [CrossRef]
- Zhang, W.W.; Li, W.L.; Wang, J.J.; Qin, C.X.; Dai, L.X. Composites of Polyvinyl Alcohol and Carbon Nanotubes Decorated with Silver Nanoparticles. Fibers Polym. 2010, 11, 1132–1136. [Google Scholar] [CrossRef]
- Caetano, F.R.; Felippe, L.B.; Zarbin, A.J.; Bergamini, M.F.; Marcolino-Junior, L.H. Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sens. Actuators B Chem. 2017, 243, 43–50. [Google Scholar] [CrossRef]
- Tareq, S.S.; Saiman, M.I.; Hin, T.Y.Y.; Abdullah, A.H.; Rashid, U. The impact of hydrogen peroxide as an oxidant for solvent-free liquid phase oxidation of Benzyl alcohol using Au-Pd supported carbon and titanium catalysts. Bull. Chem. React. Eng. Catal. 2018, 13, 373–385. [Google Scholar] [CrossRef]
- Tareq, S.; Yap, Y.H.T.; Saleh, T.A.; Abdullah, A.H.; Rashid, U.; Saiman, M.I. Synthesis of bimetallic gold-pallidum loaded on carbon as efficient catalysts for the oxidation of benzyl alcohol into benzaldehyde. J. Mol. Liq. 2018, 271, 885–891. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Perdjon, M.; Oh, R.; Zhao, W.; Huang, X.; Liu, S. Investigations of supported Au-Pd nanoparticles on synthesized CeO2 with different morphologies and application in solvent-free benzyl alcohol oxidation. Appl. Surf. Sci. 2020, 505, 144473. [Google Scholar] [CrossRef]
- Alshammari, H.; Miedziak, P.J.; Knight, D.W.; Willock, D.J.; Hutchings, G.J. The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. Catal. Sci. Technol. 2013, 3, 1531–1539. [Google Scholar] [CrossRef]
- Junghans, U.; Suttkus, C.; Lincke, J.; Lassig, D.; Krautscheid, H.; Glaser, R. Selective oxidation of cyclooctene over copper-containing metalorganic frameworks. Microporous Mesoporous Mater. 2015, 216, 151–160. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Badiei, A.; Saberyan, K. Oxovanadium(IV) salophen complex covalently anchored to multi-wall carbon nanotubes (MWNTs) as heterogeneous catalyst for oxidation of cyclooctene. Chem. Eng. J. 2011, 173, 651–658. [Google Scholar] [CrossRef]
Catalyst | Conversion % | Selectivity to Epoxide % |
---|---|---|
AuPd/O-CNT | 2.5 | 77 |
AuPd/P-CNT | 1.7 | 59 |
Catalyst | Conversion % | Selectivity to Benzyladhyde % |
---|---|---|
AuPd/O-CNT | 28.3 | 96 |
AuPd/P-CNT | 22.8 | 97.2 |
Catalysts | Substrate | Time (h) | T °C | Solvent | Yield (%) | Reference |
---|---|---|---|---|---|---|
Au-Pd/TiO2 | Benzyl alcohol | 4 | 80 | Solvent free | 6.87 | [44] |
Au-Pd/C | Benzyl alcohol | 4 | 80 | Solvent free | 11.32 | [45] |
Au-Pd/CeO2 | Benzyl alcohol | 3 | 120 | Solvent free | 48.8 (94.3) a | [46] |
Au-Pd/O-CNT | Benzyl alcohol | 2 | 120 | Solvent free | 28.3 (96) a | This work |
Au-Pd/G | cyclooctene | 24 | 80 | Solvent free | 2.5 (85) b | [47] |
Cu3(BTC)2 | cyclooctene | 12 | 75 | Solvent free | 11(22) b | [48] |
MWCNTs | cyclooctene | 24 | 78 | CH3CN | 3.8 (1.9) | [49] |
V/MWCNTs | cyclooctene | 24 | 48 | CH3CN | 6.4 (68.4) | [49] |
Au-Pd/O-CNT | cyclooctene | 6 | 80 | Solvent free | 2.5 (77) b | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, H.M.; Alshammari, A.S.; Humaidi, J.R.; Alzahrani, S.A.; Alhumaimess, M.S.; Aldosari, O.F.; Hassan, H.M.A. Au-Pd Bimetallic Nanocatalysts Incorporated into Carbon Nanotubes (CNTs) for Selective Oxidation of Alkenes and Alcohol. Processes 2020, 8, 1380. https://doi.org/10.3390/pr8111380
Alshammari HM, Alshammari AS, Humaidi JR, Alzahrani SA, Alhumaimess MS, Aldosari OF, Hassan HMA. Au-Pd Bimetallic Nanocatalysts Incorporated into Carbon Nanotubes (CNTs) for Selective Oxidation of Alkenes and Alcohol. Processes. 2020; 8(11):1380. https://doi.org/10.3390/pr8111380
Chicago/Turabian StyleAlshammari, Hamed M., Abdullah S. Alshammari, Jamal R. Humaidi, Salma A. Alzahrani, Mosaed S. Alhumaimess, Obaid F. Aldosari, and Hassan M. A. Hassan. 2020. "Au-Pd Bimetallic Nanocatalysts Incorporated into Carbon Nanotubes (CNTs) for Selective Oxidation of Alkenes and Alcohol" Processes 8, no. 11: 1380. https://doi.org/10.3390/pr8111380
APA StyleAlshammari, H. M., Alshammari, A. S., Humaidi, J. R., Alzahrani, S. A., Alhumaimess, M. S., Aldosari, O. F., & Hassan, H. M. A. (2020). Au-Pd Bimetallic Nanocatalysts Incorporated into Carbon Nanotubes (CNTs) for Selective Oxidation of Alkenes and Alcohol. Processes, 8(11), 1380. https://doi.org/10.3390/pr8111380