Nitridation Reaction of Titanium Powders by 2.45 GHz Multimode Microwave Irradiation using a SiC Susceptor in Atmospheric Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Setting
2.2. Microwave Processing
2.3. Sample Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rebenne, H.E.; Bhat, D.G. Review of CVD TiN coatings for wear-resistant applications: Deposition processes, properties and performance. Surf. Coat. Technol. 1994, 63, 1–13. [Google Scholar] [CrossRef]
- Zhang, H.; Li, F.; Jia, Q. Preparation of titanium nitride ultrafine powders by sol–gel and microwave carbo-thermal reduction nitridation methods. Ceram. Int. 2009, 35, 1071–1075. [Google Scholar] [CrossRef]
- Ehiasarian, A.; Vetushka, A.; Gonzalvo, Y.A.; Sáfrán, G.; Székely, L.; Barna, P.B. Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films. J. Appl. Phys. 2011, 109, 104314. [Google Scholar] [CrossRef]
- Sato, M.; Kitada, H.; Takeyama, M.B. Characterization of TiN films sputter-deposited at low temperatures for Cu-through-silicon via. Jpn. J. Appl. Phys. 2019, 58, SBBC03. [Google Scholar] [CrossRef]
- Chuang, K.-L.; Tsai, M.-T.; Lu, F.-H. Morphology control of conductive TiN films produced by air-based magnetron sputtering. Surf. Coat. Technol. 2018, 350, 1091–1097. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Bartosik, M.; Zhang, Y.; Mayrhofer, P.H.; He, Y. Insight into the structural evolution during TiN film growth via atomic resolution TEM. J. Alloys Compd. 2018, 754, 257–267. [Google Scholar] [CrossRef]
- Shin, H.; Kim, H.-I.; Chung, D.Y.; Yoo, J.M.; Weon, S.; Choi, W.; Sung, Y.-E. Scaffold-Like Titanium Nitride Nanotubes with a Highly Conductive Porous Architecture as a Nanoparticle Catalyst Support for Oxygen Reduction. ACS Catal. 2016, 6, 3914–3920. [Google Scholar] [CrossRef]
- White, N.; Campbell, A.L.; Grant, J.T.; Pachter, R.; Eyink, K.; Jakubiak, R.; Martinez, G.; Ramana, C.V. Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films. Appl. Surf. Sci. 2014, 292, 74–85. [Google Scholar] [CrossRef]
- Krawczyk, M.; Lisowski, W.; Sobczak, J.W.; Kosiński, A.; Jablonski, A. Studies of the hot-pressed TiN material by electron spectroscopies. J. Alloys Compd. 2013, 546, 280–285. [Google Scholar] [CrossRef]
- Chan, M.-H.; Lu, F.-H. Air-based deposition and processing windows of sputtered TiN, TiNxOy, and N-doped TiOx thin films. Surf. Coat. Technol. 2012, 210, 135–141. [Google Scholar] [CrossRef]
- Kikicaslan, A.; Zabeida, O.; Bousser, E.; Schmitt, T.; Kemberg-Sapieha, J.E.; Martinu, L. Hard titanium nitride coating deposition inside narrow tubes using pulsed DC PECVD processes. Surf. Coat. Technol. 2019, 377, 124894. [Google Scholar] [CrossRef]
- Krylov, I.; Xu, X.; Qi, Y.; Weinfeld, K.; Korchnoy, V.; Eizenberg, M.; Ritter, D. Effect of the substrate on structure and properties of titanium nitride films grown by plasma enhanced atomic layer deposition. J. Vac. Sci. Technol. A 2019, 37, 060905. [Google Scholar] [CrossRef]
- Wang, S.-Q. Reactively sputtered TiN as a diffusion barrier between Cu and Si. J. Appl. Phys. 1990, 68, 5176–5187. [Google Scholar] [CrossRef]
- Gagnon, G.; Currie, J.F.; Brebner, J.L.; Darwall, T. Efficiency of TiN diffusion barrier between Al and Si prepared by reactive evaporation and rapid thermal annealing. J. Appl. Phys. 1996, 79, 7612–7620. [Google Scholar] [CrossRef]
- Sato, M.; Takeyama, M.B. Relationship between TiN films with different orientations and their barrier properties. Jpn. J. Appl. Phys. 2018, 57, 07MB01. [Google Scholar] [CrossRef]
- Cheng, P.; DelaCuruz, S.; Tsai, D.; Wang, Z.; Carraro, C.; Maboudian, R. Enhanced thermal stability by introducing TiN diffusion barrier layer between W and SiC. J. Am. Ceram. Soc. 2019, 102, 5613–5619. [Google Scholar] [CrossRef]
- Sundgren, J.-E. Structure and properties of TiN coatings. Thin Solid Film. 1985, 128, 21–44. [Google Scholar] [CrossRef]
- Mezger, P.R.; Creugers, N.H. Titanium nitride coatings in clinical dentistry. J. Dent. 1992, 20, 342–344. [Google Scholar] [CrossRef]
- Al Jabbari, Y.S.; Fehrman, J.; Barnes, A.C.; Zapf, A.M.; Zinelis, S.; Berzins, D.W. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials. Coatings 2012, 2, 160–178. [Google Scholar] [CrossRef]
- Martineza, G.; Shutthanandan, V.; Thevuthasan, S.; Chessa, J.F.; Ramana, C.V. Effect of thickness on the structure, composition and properties of titanium nitride nano-coatings. Ceram. Int. 2014, 40, 5757–5764. [Google Scholar] [CrossRef]
- Van Bui, H.; Kovalgyn, A.Y.; Wolters, W.A.M. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films. Appl. Surf. Sci. 2012, 269, 45–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of Ti-Si-N ceramic coatings on titanium. Appl. Surf. Sci. 2015, 346, 428–437. [Google Scholar] [CrossRef]
- Takizawa, H.; Iwasaki, M.; Kimura, T.; Fujiwara, A.; Haze, N.; Endo, T. Synthesis of Inorganic Materials by 28 GHz Microwave Irradiation. Trans. Mater. Res. Soc. Jpn. 2002, 27, 51–54. [Google Scholar]
- Takizawa, H.; Hayashida, C.; Hayashi, Y. Millimeter-wave processing of metals and intermetallic compounds. Mater. Jpn. 2006, 45, 577–580. (In Japanese) [Google Scholar] [CrossRef]
- Kashimura, K.; Fukushima, J.; Mitani, T.; Sato, M.; Shinohara, N. Metal Ti-Cr Alloy Powders Nitriding under Atmospheric Pressure by Microwave Heating. J. Alloy. Compd. 2013, 550, 239–244. [Google Scholar] [CrossRef]
- Roy, R.; Agrawal, D.; Cheng, J.; Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 1999, 399, 668–670. [Google Scholar] [CrossRef]
- Takayama, S.; Link, D.; Miksch, S.; Sato, M.; Thumm, M. Millimetre wave effects on sintering behaviour of metal powder compacts. Powder Metall. 2006, 49, 274–280. [Google Scholar] [CrossRef]
- Suzuki, M.; Ignatenko, M.; Yamashiro, M.; Tanaka, M.; Sato, M. Numerical study of microwave heating of micrometer size metal particles. ISIJ Int. 2008, 48, 681–684. [Google Scholar] [CrossRef]
- Kashimura, K.; Fukushima, J.; Sato, M. Oxygen Partial Pressure Change with Metal Titanium Powder Nitriding under Microwave Heating. ISIJ Int. 2011, 51, 181–185. [Google Scholar] [CrossRef][Green Version]
- Fukushima, J.; Kashimura, K.; Takayama, S.; Sato, M. Microwave-energy Distribution for Reduction and Decrystallization of Titanium Oxides. Chem. Lett. 2012, 41, 39–41. [Google Scholar] [CrossRef]
- Fukushima, J.; Kashimura, K.; Takayama, S.; Sato, M.; Sano, S.; Hayashi, Y.; Takizawa, H. In-Situ Kinetic Study on Non-Thermal Reduction Reaction of CuO during Microwave Heating. Mater. Lett. 2013, 91, 252–254. [Google Scholar] [CrossRef]
- Goto, H.; Fukushima, J.; Takizawa, H. Control of Magnetic Properties of NiMn2O4 by a Microwave Magnetic Field under Air. Materials 2016, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, J.; Takayama, S.; Goto, H.; Sato, M.; Takizawa, H. In situ Analysis of Reaction Kinetics of Reduction Promotion of NiMn2O4 under Microwave H-Field Irradiation. Phys. Chem. Chem. Phys. 2017, 19, 17904–17908. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Temperature (°C) | Oxygen (wt %) | Nitrogen (wt %) | O:N |
---|---|---|---|---|
1 | 800 | 0.692 | 5.82 | 2:16.8 |
1 | 850 | 1.03 | 4.26 | 2:8.3 |
1 | 900 | 0.835 | 6.57 | 2:15.7 |
1 | 950 | 1.29 | 6.97 | 2:10.8 |
1 | 1000 | 0.675 | 7.99 | 2:23.7 |
10 | 800 | 0.996 | 4.84 | 2:9.7 |
10 | 850 | 0.956 | 4.49 | 2:9.4 |
10 | 900 | 0.927 | 7.95 | 2:17.2 |
10 | 950 | 0.78 | 7.79 | 2:20.0 |
10 | 1000 | 0.624 | 9.65 | 2:30.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukushima, J.; Kashimura, K.; Takizawa, H. Nitridation Reaction of Titanium Powders by 2.45 GHz Multimode Microwave Irradiation using a SiC Susceptor in Atmospheric Conditions. Processes 2020, 8, 20. https://doi.org/10.3390/pr8010020
Fukushima J, Kashimura K, Takizawa H. Nitridation Reaction of Titanium Powders by 2.45 GHz Multimode Microwave Irradiation using a SiC Susceptor in Atmospheric Conditions. Processes. 2020; 8(1):20. https://doi.org/10.3390/pr8010020
Chicago/Turabian StyleFukushima, Jun, Keiichiro Kashimura, and Hirotsugu Takizawa. 2020. "Nitridation Reaction of Titanium Powders by 2.45 GHz Multimode Microwave Irradiation using a SiC Susceptor in Atmospheric Conditions" Processes 8, no. 1: 20. https://doi.org/10.3390/pr8010020
APA StyleFukushima, J., Kashimura, K., & Takizawa, H. (2020). Nitridation Reaction of Titanium Powders by 2.45 GHz Multimode Microwave Irradiation using a SiC Susceptor in Atmospheric Conditions. Processes, 8(1), 20. https://doi.org/10.3390/pr8010020