# A Dispatching Optimization Model for Park Power Supply Systems Considering Power-to-Gas and Peak Regulation Compensation

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Dispatching Optimization Model for the Park Power Supply System

#### 2.1. Structure of the Park Power Supply System with the P2G

_{4}, and CH

_{4}is only used for power generation. The surplus CH

_{4}will be stored in the gas storage tank. Also, the WT, PVU, P2G, and gas storage tank (P2G and gas storage tank are defined as PGST in this paper) only participate in the internal transactions, and the GFG participates in the ancillary service market. When the wind/photovoltaic power generation cannot meet the power load of users in the park, the GFG provides the peak regulation service.

#### 2.2. Output Models of Equipment

_{4}is about 45–60%. The power-to-CH

_{4}model and the state of gas storage [25] are illustrated as

_{4}production of the P2G at time t (m

^{3}); ${E}_{\mathrm{P}2\mathrm{G}}(t)$ is the power consumption of P2G at time t (kW·h); ${\phi}_{\mathrm{P}2\mathrm{G}}$ is the P2G conversion efficiency (%); $HCV$ is the high calorific value of natural gas (39 MJ/m

^{3}) [31]; ${S}_{\mathrm{g}}(t)$ is the gas volume in the gas storage tank at time t (m

^{3}); ${S}_{\mathrm{g}}({T}_{0})$ is the initial gas volume (m

^{3}); and ${Q}_{\mathrm{o}}\left(t\right)$ is the gas volume from the gas storage tank to the GFG at time t (m

^{3}).

#### 2.3. Peak Regulation Compensation Mechanism

#### 2.4. Objective Functions

^{3}); and ${c}_{g}^{*}$ is the unit operation and maintenance cost ($).

#### 2.5. Constraints

## 3. Case Study

#### 3.1. Scenario Settings

- In Scenario 1 (S1), the park power supply system employed an energy storage device (ESD) to store the unconsumed wind/photovoltaic power generated to be sold in the next period;
- In Scenario 2 (S2), the park power supply system employed a P2G and a gas storage tank (PGST) to convert the unconsumed wind/photovoltaic power generated into natural gas to be stored in the gas storage tank as the fuel for power generation.

- In Scenario 3 (S3), the park power supply system employed a PGST and an ESD. The unconsumed wind/photovoltaic power generated was preferentially converted into natural gas via the P2G and stored in the gas storage tank as the fuel for power generation, and then the surplus was stored in the ESD.
- In Scenario 4 (S4), the park power supply system employed a PGST and an ESD. The unconsumed wind/photovoltaic power generated was preferentially stored in the ESD, and then the surplus was converted into natural gas via the P2G and stored in the gas storage tank as the fuel for power generation.

#### 3.2. Basic Data

^{3}(for convenient calculation, it was converted into the unit calorific value price, 0.049 $/kW·h).

#### 3.3. Results Analysis

#### 3.3.1. Wind/Photovoltaic Curtailment

#### 3.3.2. GFG Costs

#### 3.3.3. System Economic Benefits

## 4. Conclusions

_{2}emission reduction (environmentally) will be taken into account and how much it can gain for the park power supply system in terms of green certificate trading and carbon trading (economically) will be investigated. Also, more marketized peak regulation compensation means and more types of peak regulation units based on local resource advantages will be discussed, respectively.

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Pu, L.; Wang, X.; Tan, Z.; Wu, J.; Long, C.; Kong, W. Feasible electricity price calculation and environmental benefits analysis of the regional nighttime wind power utilization in electric heating in Beijing. J. Clean. Prod.
**2019**, 212, 1434–1445. [Google Scholar] [CrossRef] - Renewable Energy Grid Operation in the First Half of 2019. Available online: http://www.nea.gov.cn/2019-07/25/c_138257185.htm (accessed on 25 July 2019).
- Stephen, C.; Pierluigi, M. Integrated modeling and assessment of the operational impact of power-to-Gas (P2G) on electrical and gas transmission networks. IEEE Trans. Sustain. Energy
**2015**, 6, 1234–1244. [Google Scholar] - Ju, L.; Zhao, R.; Tan, Q.; Lu, Y.; Tan, Q.; Wang, W. A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response. Appl. Energy
**2019**, 250, 1336–1355. [Google Scholar] [CrossRef] - Gholizadeh, N.; Vahid-Pakdel, M.J.; Mohammadi-ivatloo, B. Enhancement of demand supply’s security using power to gas technology in networked energy hubs. Int. J. Electr. Power Energy Syst.
**2019**, 109, 83–94. [Google Scholar] [CrossRef] - Yu, J.; Ma, M.; Guo, L.; Zhang, S. Reliability evaluation of integrated electrical and natural-gas system with power-to-gas. Proc. CSEE
**2018**, 38, 708–715. [Google Scholar] - Yang, D.; Xi, Y.; Cai, G. Day-Ahead Dispatch Model of Electro-Thermal Integrated Energy System with Power to Gas Function. Appl. Sci.
**2017**, 7, 1326. [Google Scholar] [CrossRef] - Marco, B.; Gabriele, F. Optimising energy flows and synergies between energy networks. Energy
**2019**, 173, 400–412. [Google Scholar] - Hassan, A.; Patel, M.K.; Parra, D. An assessment of the impacts of renewable and conventional electricity supply on the cost and value of power-to-gas. Int. J. Hydrogen Energy
**2019**, 44, 9577–9593. [Google Scholar] [CrossRef] - Fischer, D.; Kaufmann, F.; Oliver, S.L.; Christoper, V. Power-to-gas in a smart city context—Influence of network restrictions and possible solutions using on-site storage and model predictive controls. Int. J. Hydrogen Energy
**2018**, 43, 9483–9494. [Google Scholar] [CrossRef] - Miguel, C.V.; Mendes, A.; Madeira, L.M. An Overview of the Portuguese Energy Sector and Perspectives for Power-to-Gas Implementation. Energies
**2018**, 11, 3259. [Google Scholar] [CrossRef] - Garcia, D.A.; Barbanera, F.; Cumo, F.; di Matteo, U.; Nastasi, B. Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe. Energies
**2016**, 9, 963. [Google Scholar] [CrossRef] - Liu, W.; Wen, F.; Xue, Y.; Zhao, J.; Dong, Z.; Zheng, Y. Cost characteristics and economic analysis of power-to-gas technology. Autom. Electr. Power Syst.
**2016**, 40, 1–11. [Google Scholar] - Masoud, G.; Rajabi, M.H.; Amin, H. Importance of gas-fired power plants location in integrated operation of power and natural gas systems: Peak load condition analysis. In Proceedings of the 26th Iranian Conference on Electrical Engineering, Mashhad, Iran, 8–10 May 2018; pp. 1227–1232. [Google Scholar]
- Zhao, C.; Zhang, H.; Li, F.; Yuan, J. Economic research on gas CHP and peaking generation in Beijing. Int. Pet. Econ.
**2017**, 25, 99–105. [Google Scholar] - Zhong, K.; Wang, D.; Yang, G.; Fu, J. Peak shaving analysis of electric vehicle and gas turbine under B2G mode. Electrotech. Appl.
**2018**, 37, 47–52. [Google Scholar] - Shen, W.; Zhen, W.; Zhou, D.; Gao, Y. Wind power peak Regulation pricing model under wind and fire alternative trading mechanism—A case study of wind Power Integration, Gansu Province. In Proceedings of the 2018 China International Conference on Electricity Distribution, Tianjin, China, 17–19 September 2018. [Google Scholar]
- Li, Y.; Li, H. Improvement of compensation mechanism on peak-regulating auxiliary service for thermal power unit with energy saving dispatch. Heilongjiang Electr. Power
**2014**, 26, 194–197. [Google Scholar] - Yang, Z.; Li, K.; Wang, N.; Jin, Z.; Song, S.; Guo, X. A Model of Considering the Economic Analysis and Environmental Protection for Thermal Power Compensation on Peak Regulation. J. Eng. Thermophys.
**2018**, 39, 2124–2130. [Google Scholar] - Na, C.; Yuan, J.; Zhu, Y.; Xue, L. Economic Decision-Making for Coal Power Flexibility Retrofitting and Compensation in China. Sustainability
**2018**, 10, 348. [Google Scholar] [CrossRef] - Wang, Y.; Tian, Y.; Wu, M.; Geng, J. Two-part electricity price model for peak load regulation of natural gas power based on fuzzy clustering. Proc. CSEE
**2017**, 6, 38–46. [Google Scholar] - Kong, D.; Long, H.; Li, G.; Liu, Y. Research on equivalent smoothing strategy of PV output based on micro energy system. Acta Energy Sol. Sin.
**2017**, 9, 33–41. [Google Scholar] - Gil, M.; Duenas, P.; Reneses, J. Electricity and natural gas interdependency: Comparison of two methodologies for coupling large market models within the European regulatory framework. IEEE Trans. Power Syst.
**2016**, 31, 361–369. [Google Scholar] [CrossRef] - Xu, Z.; Zhang, Y.; Chen, Z.; Lin, X.; Chen, B. Bi-level optimal capacity configuration for power to gas facilities considering operation strategy and investment subject benefit. Autom. Electr. Power Syst.
**2018**, 42, 76–84. [Google Scholar] - Tan, Z.; Tan, Q.; Yang, S.; Ju, L.; De, G. A Robust Scheduling Optimization Model for an Integrated Energy System with P2G Based on Improved CVaR. Energies
**2018**, 11, 3437. [Google Scholar] [CrossRef] - Weiler, V.; Stave, J.; Eicker, U. Renewable Energy Generation Scenarios Using 3D Urban Modeling Tools Methodology for Heat Pump and Co-Generation Systems with Case Study Application
^{†}. Energies**2019**, 12, 403. [Google Scholar] [CrossRef] - Cheng, J.; Choobineh, F. A Novel Wind Energy Conversion System with Storage for Spillage Recovery. J. Power Energy Eng.
**2015**, 3, 33–38. [Google Scholar] [CrossRef] - Wang, Y.; Lu, Y.; Ju, L.; Wang, T.; Tan, Q.; Wang, J.; Tan, Z. A Multi-objective Scheduling Optimization Model for Hybrid Energy System Connected with Wind-Photovoltaic-Conventional Gas Turbines, CHP Considering Heating Storage Mechanism. Energies
**2019**, 12, 425. [Google Scholar] [CrossRef] - Ju, L.; Zhang, Q.; Tan, Z.; Wang, W.; Xin, H.; Zhang, Z. Multi-agent-system-based coupling control optimization model for micro-grid group intelligent scheduling considering autonomy-cooperative operation strategy. Energy
**2018**, 157, 1035–1052. [Google Scholar] [CrossRef] - Andrea, M.; Ettore, B.; Gianfranco, C. Applications of power to gas technologies in emerging electrical systems. Renew. Sustain. Energy Rev.
**2018**, 92, 794–806. [Google Scholar] - Wei, Z.; Zhang, S.; Sun, G.; Zang, H.; Chen, S.; Chen, S. Power-to-gas Considered Peak Load Shifting Research for Integrated Electricity and Natural-gas Energy Systems. Proc. CSEE
**2017**, 37, 4601–4609. [Google Scholar] - Yang, S.; Tan, Z.; Ju, L.; Lin, H.; De, G.; Tan, Q.; Zhou, F. An Income Distributing Optimization Model for Cooperative Operation among Different Types of Power Sellers Considering Different Scenarios. Energies
**2018**, 11, 2895. [Google Scholar] [CrossRef] - Wang, J. Optimization of Power System Operation Based on GAMS. Master’s Thesis, South China University of Technology, Guangzhou, China, 2014. [Google Scholar]

**Figure 3.**Unit output and wind/photovoltaic curtailment in different scenarios. (

**a**) Unit output and wind/photovoltaic curtailment in S1. (

**b**) Unit output and wind/photovoltaic curtailment in S2. (

**c**) Unit output and wind/photovoltaic curtailment in S3. (

**d**) Unit output and wind/photovoltaic curtailment in S4.

Scenario | Energy Storage Device (ESD) | P2G and Gas Storage Tank (PGST) | Use Priority |
---|---|---|---|

S1 | √ | / | / |

S2 | / | √ | / |

S3 | √ | √ | PGST > ESD |

S4 | √ | √ | ESD > PGST |

**Table 2.**Equipment parameters of the wind turbine (WT), the photovoltaic unit (PVU), and the P2G and gas storage tank (PGST).

Equipment | Capacity | Unit Cost ($/kW·h) | Current Limitation (km^{3}/h) | Conversion Efficiency | Unit Operation and Maintenance Cost ($/kW·h) |
---|---|---|---|---|---|

Wind turbine (WT) | 10 (MW) | 0.049 | / | / | / |

Photovoltaic unit (PVU) | 500 (kW) | 0.085 | / | / | / |

P2G | 400 (kW) | / | / | 60% | 0.078 |

Gas store tank | 50 (km^{3}) | / | 20~50 | / |

GFG | a | b | c | d |
---|---|---|---|---|

Capacity(kW) | 1000 | 500 | 500 | 500 |

Generation efficiency | 60% | 60% | 60% | 60% |

Unit operation and maintenance cost ($/kW·h) | 0.098 | 0.098 | 0.098 | 0.098 |

Category | Item | Price ($/kW·h) |
---|---|---|

Park power price | Peak period | 0.170 |

Valley period | 0.113 | |

Flat period | 0.141 | |

External power price | Peak period | 0.204 |

Valley period | 0.157 | |

Flat period | 0.172 |

Peak Regulation Rate (PRR) | Lower Limit ($/kW) | Upper Limit ($/kW·h) |
---|---|---|

48% < PRR ≤ 55% | 0.042 | 0.071 |

55% < PRR ≤ 60% | 0.071 | 0.113 |

PRR > 60% | 0.113 | 0.141 |

Unit | GFG a | GFG b | GFG c | GFG d | |
---|---|---|---|---|---|

Times | |||||

1 | 0.061 | 0.056 | 0.062 | 0.069 | |

2 | 0.066 | 0.055 | 0.063 | 0.069 | |

3 | 0.065 | 0.054 | 0.060 | 0.058 | |

4 | 0.060 | 0.062 | 0.059 | 0.066 | |

5 | 0.082 | 0.094 | 0.085 | 0.097 | |

6 | 0.108 | 0.107 | 0.078 | 0.113 | |

7 | 0.091 | 0.078 | 0.109 | 0.110 | |

8 | 0.139 | 0.126 | 0.135 | 0.132 | |

9 | 0.113 | 0.131 | 0.118 | 0.121 | |

10 | 0.125 | 0.113 | 0.114 | 0.139 | |

11 | 0.138 | 0.140 | 0.137 | 0.124 | |

12 | 0.131 | 0.123 | 0.140 | 0.117 | |

13 | 0.121 | 0.132 | 0.123 | 0.129 | |

14 | 0.123 | 0.124 | 0.115 | 0.122 | |

15 | 0.130 | 0.117 | 0.135 | 0.132 | |

16 | 0.089 | 0.103 | 0.107 | 0.092 | |

17 | 0.106 | 0.105 | 0.085 | 0.098 | |

18 | 0.096 | 0.082 | 0.097 | 0.084 | |

19 | 0.124 | 0.130 | 0.129 | 0.139 | |

20 | 0.126 | 0.119 | 0.130 | 0.132 | |

21 | 0.123 | 0.136 | 0.137 | 0.130 | |

22 | 0.135 | 0.117 | 0.138 | 0.122 | |

23 | 0.062 | 0.055 | 0.066 | 0.058 | |

24 | 0.054 | 0.063 | 0.066 | 0.065 |

Scenario | 1 | 2 | 3 | 4 |
---|---|---|---|---|

Clean energy curtailment rate | 16.70% | 12.37% | 11.59% | 11.18% |

Scenario | S1 | S2 | S3 | S4 | |
---|---|---|---|---|---|

Period | Valley period | 26.442 | 25.593 | 25.593 | 25.593 |

Flat period | 66.458 | 4.666 | 4.666 | 0 | |

Peak period | 1651.693 | 1494.174 | 1452.744 | 1426.302 | |

Total | 1744.593 | 1524.433 | 1483.003 | 1451.754 |

Scenario | S1 | S2 | S3 | S4 |
---|---|---|---|---|

Total costs | 3728.577 | 3662.543 | 3641.050 | 3608.387 |

Net profit | 2203.436 | 2319.526 | 2336.069 | 2355.441 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Qin, Y.; Lin, H.; Tan, Z.; Yan, Q.; Li, L.; Yang, S.; De, G.; Ju, L. A Dispatching Optimization Model for Park Power Supply Systems Considering Power-to-Gas and Peak Regulation Compensation. *Processes* **2019**, *7*, 813.
https://doi.org/10.3390/pr7110813

**AMA Style**

Qin Y, Lin H, Tan Z, Yan Q, Li L, Yang S, De G, Ju L. A Dispatching Optimization Model for Park Power Supply Systems Considering Power-to-Gas and Peak Regulation Compensation. *Processes*. 2019; 7(11):813.
https://doi.org/10.3390/pr7110813

**Chicago/Turabian Style**

Qin, Yunfu, Hongyu Lin, Zhongfu Tan, Qingyou Yan, Li Li, Shenbo Yang, Gejirifu De, and Liwei Ju. 2019. "A Dispatching Optimization Model for Park Power Supply Systems Considering Power-to-Gas and Peak Regulation Compensation" *Processes* 7, no. 11: 813.
https://doi.org/10.3390/pr7110813