Growth Mechanisms of Small-Displacement Strike–Slip Faults in Cratonic Basins: Insights from Material Point Method Simulations
Abstract
:1. Introduction
2. Material Point Method
3. Design of Strike–Slip Fault Simulations
3.1. Isopachous Strata
3.2. Non-Isopachous Strata
4. Analysis of Thickness Control Factors
4.1. Isopachous Stratum
4.2. Non-Isopachous Stratum
5. Deformation Characteristics of Strike–Slip Faults
6. Discussion
7. Conclusions
- (1)
- Thickness–Density Relationship
- (2)
- Thickness–Length Correlation
- (3)
- Surface Expression Diagnostic
- (4)
- Formation Mechanism of Riedel Shears
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, G.; Ma, B.; Han, J.; Guan, B.; Chen, X.; Yang, P.; Zhou, X. Origin and growth mechanisms of strike–slip faults in the central Tarim cratonic basin, NW China. Pet. Explor. Dev. 2021, 48, 595–607. [Google Scholar] [CrossRef]
- Deng, S.; Zhao, R.; Kong, Q.; Li, Y.; Li, B. Two distinct strike–slip fault networks in the Shunbei area and its surroundings, Tarim Basin: Hydrocarbon accumulation, distribution, and controlling factors. AAPG Bull. 2022, 106, 77–102. [Google Scholar] [CrossRef]
- Guan, S.; Zhang, Y.; Jiang, H.; Lu, X.; Liang, H.; Huang, S.; Su, N. Cratonic strike–slip fault systems in the central Sichuan Basin, China. Earth-Sci. Rev. 2024, 254, 104800. [Google Scholar] [CrossRef]
- Mitchell, T.M.; Faulkner, D.R. The nature and origin of off-fault damage surrounding strike–slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. J. Struct. Geol. 2009, 31, 802–816. [Google Scholar] [CrossRef]
- Chemenda, A.I.; Cavalié, O.; Vergnolle, M.; Bouissou, S.; Delouis, B. Numerical model of formation of a 3-strike–slip fault system. Comptes Rendus—Geosci. 2016, 348, 61–69. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, W.; Luo, C.; Li, Y.; Li, H.; Zhou, H.; Li, C.; Wu, G.; Huang, Z.; Liu, Y.; et al. The faults and faulting phases of the Manshen-1 fault belt, central Tarim Basin. Chin. J. Geol. 2021, 56, 1015–1033, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Sylvester, A.G. Strike–slip faults. Bull. Geol. Soc. Am. 1988, 100, 1666–1703. [Google Scholar] [CrossRef]
- Gogonenkov, G.N.; Timurziev, A.I. Strike–slip faulting in the West Siberian Platform: Insights from 3D seismic imagery. Comptes Rendus—Geosci. 2012, 344, 214–226. [Google Scholar] [CrossRef]
- Reitman, N.G.; Klinger, Y.; Briggs, R.W.; Gold, R.D. Climatic influence on the expression of strike–slip faulting. Geology 2023, 51, 18–22. [Google Scholar] [CrossRef]
- Liu, Y.; Konietzky, H. Particle-Based Modeling of Transtensional Pull-Apart Basins. Tectonics 2018, 37, 4700–4713. [Google Scholar] [CrossRef]
- Duan, X.; Zhou, W.; Han, R. Controlling factors of Riedel shear spacing in the simple shear mode of strike–slip fault: Insights from sandbox models. J. Struct. Geol. 2024, 189, 105261. [Google Scholar] [CrossRef]
- Asaoka, A.; Sawada, Y.; Yamada, S. Riedel shear band formation with flower structures that develop at the surface ground on a strike slip fault. Jpn. Geotech. Soc. Spec. Publ. 2016, 2, 751–754. [Google Scholar] [CrossRef]
- Jiao, L.; Klinger, Y.; Scholtès, L. Fault Segmentation Pattern Controlled by Thickness of Brittle Crust. Geophys. Res. Lett. 2021, 48, e2021GL093390. [Google Scholar] [CrossRef]
- Jiao, L.; Tapponnier, P.; Mccallum, A.C.-C.; Xu, X. The shape of the Himalayan “Arc”: An ellipse pinned by syntaxial strike–slip fault tips. Proc. Natl. Acad. Sci. USA 2024, 121, e2313278121. [Google Scholar] [CrossRef]
- Dooley, T.P.; Schreurs, G. Analogue modelling of intraplate strike–slip tectonics: A review and new experimental results. Tectonophysics 2012, 574–575, 1–71. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Z.; Fan, T.; Shang, Y.; Qi, L.; Yun, L. Structural characterization and hydrocarbon prediction for the SB5M strike–slip fault zone in the Shuntuo Low Uplift, Tarim Basin. Mar. Pet. Geol. 2020, 117, 104418. [Google Scholar] [CrossRef]
- Buiter, S.J.; Schreurs, G.; Albertz, M.; Gerya, T.V.; Kaus, B.; Landry, W.; Beaumont, C. Benchmarking numerical models of brittle thrust wedges. J. Struct. Geol. 2016, 92, 140–177. [Google Scholar] [CrossRef]
- Klinger, Y. Relation between continental strike–slip earthquake segmentation and thickness of the crust. J. Geophys. Res. Solid Earth 2010, 115, B07306. [Google Scholar] [CrossRef]
- Pons, A.J.; Karma, A. Helical crack-front instability in mixed-mode fracture. Nature 2010, 464, 85–89. [Google Scholar] [CrossRef]
- Li, X.; Huang, L. Fault propagation in pull-apart basins and its implication on depocenter migration: A discontinuum-based numerical study. Geol. J. 2023, 59, 1171–1185. [Google Scholar] [CrossRef]
- Chmelnizkij, A. Improved double-point material point method for dynamic geotechnical problems. J. Phys. Conf. Ser. 2024, 2647, 82013. [Google Scholar] [CrossRef]
- Praveen, D.A.; Divya, P.V. Material point method (mpm) modelling of the impact on debris flow barriers. Int. J. Geosynth. Ground Eng. 2025, 11, 28. [Google Scholar] [CrossRef]
- Sun, Z.; Hua, Y.; Xu, Y.; Zhou, X. Simulation of fluid-structure interaction using the density smoothing b-spline material point method with a contact approach. Comput. Math. Appl. 2024, 176, 525–544. [Google Scholar] [CrossRef]
- Silva, T.A.; Gomes, I.F.; Miranda, T.S.; Correia Filho, O.J.; Medeiros, C.E.B.; Carvalho, B.R.B.M.; Falcão, T.C. Quantifying damage zones width in strike–slip faults: Insights from a two-dimensional finite-element modeling approach. J. Struct. Geol. 2024, 186, 105201. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Z.; Mao, X.; Wang, C.; Li, L. Ore-forming simulation of the Axi low-sulfidation epithermal gold deposit, Western China: Genetic implications on mineralization pattern. J. Geochem. Explor. 2025, 273, 107740. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Donzé, F.V.; Klinger, Y.; Bonilla-Sierra, V.; Duriez, J.; Jiao, L.; Scholtès, L. Assessing the brittle crust thickness from strike–slip fault segments on Earth, Mars and Icy moons. Tectonophysics 2021, 805, 228779. [Google Scholar] [CrossRef]
- Chen, J.; He, D.; Tian, F.; Huang, C.; Ma, D.; Zhang, W. Control of mechanical stratigraphy on the stratified style of strike–slip faults in the central Tarim Craton, NW China. Tectonophysics 2022, 830, 229307. [Google Scholar] [CrossRef]
- Zhen, C.; Li, J.; Fu, X.; Qian, S.; Zhou, G.; Ma, Y.; Wang, T. Evaluating the response of a tunnel subjected to strike–slip fault rupture in conjunction with model test and hybrid discrete–continuous numerical modeling. Rock Mech. Rock Eng. 2022, 55, 4743–4764. [Google Scholar] [CrossRef]
- Li, C.; Yin, H.; Wu, C.; Zhang, Y.; Zhang, J.; Wu, Z.; Ren, R. Calibration of the discrete element method and modeling of shortening experiments. Front. Earth Sci. 2021, 9, 636512. [Google Scholar] [CrossRef]
- Sulsky, D. Application of a particle-indashcell method to solid mechanics. Comput. Phys. Commun. 1996, 96, 105–106. [Google Scholar] [CrossRef]
- Schreyer, H.L.; Sulsky, D.L.; Zhou, S.J. Modeling delamination as a strong discontinuity with the material point method. Comput. Methods Appl. Mech. Eng. 2002, 191, 2483–2507. [Google Scholar] [CrossRef]
- Bardenhagen, S.G.; Brackbill, J.U.; Sulsky, D. The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 2000, 187, 529–541. [Google Scholar] [CrossRef]
- Bardenhagen, S.G.; Guilkey, J.E.; Roessig, K.M.; Brackbill, J.U.; Witzel, W.M.; Foster, J.C. An improved contact algorithm for the material point method and application to stress propagation in granular material. Comput. Model. Eng. Sci. 2001, 2, 509–522. [Google Scholar] [CrossRef]
- Huang, P.; Li, S.; Guo, H.; Hao, Z. Large deformation failure analysis of the soil slope based on the material point method. Comput. Geosci. 2015, 19, 951–963. [Google Scholar] [CrossRef]
- Carlini, M.; Viola, G.; Mattila, J.; Castellucci, L. The role of mechanical stratigraphy on the refraction of strike–slip faults. Solid Earth 2019, 10, 343–356. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, Y.; Zhang, W. Analysis of the Entire Failure Process of the Rotational Slide Using the Material Point Method. Int. J. Geomech. 2018, 18, 4018092. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Liu, Y. The Material Point Method—A Continuum-Based Particle Method for Extreme Loading Cases; Acadademice Press: New York, NY, USA, 2016. [Google Scholar]
- Editorial Board of Engineering Geology Manual. Geological Engineering Handbook, 5th ed.; China Architecture & Building Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, S.; Hu, Z.; Gao, J.; Shi, B.; Chi, Y. Growth Mechanisms of Small-Displacement Strike–Slip Faults in Cratonic Basins: Insights from Material Point Method Simulations. Processes 2025, 13, 1946. https://doi.org/10.3390/pr13061946
Li C, Li S, Hu Z, Gao J, Shi B, Chi Y. Growth Mechanisms of Small-Displacement Strike–Slip Faults in Cratonic Basins: Insights from Material Point Method Simulations. Processes. 2025; 13(6):1946. https://doi.org/10.3390/pr13061946
Chicago/Turabian StyleLi, Changsheng, Shuangjian Li, Zongquan Hu, Jian Gao, Butao Shi, and Yu Chi. 2025. "Growth Mechanisms of Small-Displacement Strike–Slip Faults in Cratonic Basins: Insights from Material Point Method Simulations" Processes 13, no. 6: 1946. https://doi.org/10.3390/pr13061946
APA StyleLi, C., Li, S., Hu, Z., Gao, J., Shi, B., & Chi, Y. (2025). Growth Mechanisms of Small-Displacement Strike–Slip Faults in Cratonic Basins: Insights from Material Point Method Simulations. Processes, 13(6), 1946. https://doi.org/10.3390/pr13061946