Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México
Abstract
1. Introduction
2. Experimental Procedure
Simulation Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortíz-Rodríguez, O.; Ocampo-Duque, W.; Duque-Salazar, L. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle del Cauca, Colombia. Energies 2017, 10, 2117–2129. [Google Scholar] [CrossRef]
- Ziouzios, D.; Baras, N.; Balafas, V.; Dasygenis, M.; Stimoniaris, A. Intelligent and Real-Time Detection and Classification Algorithm for Recycled Materials Using Convolutional Neural Networks. Recycling 2022, 7, 9–22. [Google Scholar] [CrossRef]
- Adhikari, B.; De, D.; Maiti, S. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000, 25, 909–948. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Recycling Waste Tires into Ground Tire Rubber (GTR)/Rubber Compounds: A Review. J. Compos. Sci. 2020, 4, 103–145. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview. Constr. Build. Mater. 2013, 67, 217–224. [Google Scholar] [CrossRef]
- Price, W.; Smith, E.D. Waste tire recycling: Environmental benefits and commercial challenges. Int. J. Environ. Technol. Manag. 2006, 6, 362–374. [Google Scholar] [CrossRef]
- Stevenson, K.; Stallwood, B.; Hart, A. Tire Robber Recycling and Bioremediation: A review. Biorem. J. 2008, 12, 1–11. [Google Scholar] [CrossRef]
- Siddika, A.; Al Mamun, M.; Alyousef, R.; Mugahed Amran, Y.; Aslani, F.; Alabduljabbar, H. Properties and utilizations of waste tire rubber in concrete: A review. Constr. Build. Mater. 2019, 224, 711–731. [Google Scholar] [CrossRef]
- Sathiskumar, C.; Karthikeyan, S. Recycling of waste tires and its energy storage application of by-products—A review. Sustain. Mater. Technol. 2019, 22, e00125. [Google Scholar] [CrossRef]
- Shakya, P.R.; Shrestha, P.; Tamrakar, C.S.; Bhattarai, P.K. Studies on potential emission of hazardous gases due to uncontrolled open-air burning of waste vehicle tyres and their possible impacts on the environment. Atmos. Environ. 2008, 42, 6555–6559. [Google Scholar] [CrossRef]
- Fiksel, J.; Bakshi, B.; Baral, A.; Guerra, E.; DeQuervain, B. Comparative life cycle assessment of beneficial applications for scrap tires. Clean. Technol. Environ. 2011, 13, 19–35. [Google Scholar] [CrossRef]
- Hejna, A.; Korol, J.; Przybysz-Romatowska, M.; Zedler, Ł.; Chmielnicki, B.; Formela, K. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers-a review. Waste Manag. 2020, 108, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resour. Conserv. Recycl. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Levlin, J.E.; Read, B.; Grossmann, H.; Hooimeijer, A.; Ervasti, I.; Lozo, B.; Julien Saint Amand, F.; Cochaux, A.; Faul, A.; Ringman, J.; et al. The Future of Paper Recycling in Europe: Opportunities and Limitations; Stawicki, B., Ed.; The Paper Industry Technical Association: Bury, UK, 2010. [Google Scholar]
- Zaman, A.U. A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. J. Clean. Prod. 2016, 124, 41–50. [Google Scholar] [CrossRef]
- Galvagno, S.; Casu, S.; Casabianca, T.; Calabrese, A.; Cornacchia, G. Pyrolysis process for the treatment of scrap tyres: Preliminary experimental results. Waste Manag. 2002, 22, 917–923. [Google Scholar] [CrossRef]
- Ruwona, W.; Danha, G.; Muzenda, E. A review on material and energy recovery from waste tyres. Procedia Manuf. 2019, 35, 216–222. [Google Scholar] [CrossRef]
- Malyshkov, G.B.; Nikolaichuk, L.A.; Sinkov, L.S. Legislative regulation of waste management system development in Russian federation. Int. J. Eng. Res. Technol. 2019, 12, 631–635. [Google Scholar]
- Yang, Z.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Recycling of municipal solid waste incineration by-product for cement composites preparation. Constr. Build. Mater. 2018, 162, 794–801. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Ferrāo, P.; Ribeiro, P.; Silva, P. A management system for end-of-life tyres: A Portuguese case study. Waste Manag. 2000, 28, 604–614. [Google Scholar] [CrossRef]
- Gigli, S.; Landi, D.; Germani, M. Cost-benefit analysis of a circular economy project: A study on a recycling system for end-of-life tyres. J. Clean. Prod. 2019, 229, 680–694. [Google Scholar] [CrossRef]
- Alwaeli, M. End-of-life vehicles recovery and recycling and the route to comply with EU directive targets. Environ. Prot. Eng. 2016, 42, 191–202. [Google Scholar] [CrossRef]
- Torreta, V.; Rada, E.C.; Raggazi, M.; Trulli, E.; Istrate, I.E.; Cioca, L.L. Treatment and disposal of tyres: Two EU approaches. A review. Waste Manag. 2015, 45, 152–160. [Google Scholar] [CrossRef] [PubMed]
- European Tyre & Rubber, Manufacturers’ Association. Press Release. 2021. Available online: https://www.etrma.org/wp-content/uploads/2021/05/20210520_ETRMA_PRESS-RELEASE_ELT-2019.pdf (accessed on 11 May 2022).
- Van Beukering, P.J.H.; Janssen, M.A. Trade and recycling of used tyres in Western and Eastern Europe. Resour. Conserv. Recycl. 2001, 33, 235–265. [Google Scholar] [CrossRef]
- Sharma, V.K.; Fortuna, F.; Mincarini, M.; Berillo, M.; Cornacchia, G. Disposal of waste tyres for energy recovery and safe environment. Appl. Energy 2000, 65, 381–394. [Google Scholar] [CrossRef]
- Eriksson, O. Energy and waste management. Energies 2017, 10, 1072–1078. [Google Scholar] [CrossRef]
- Asaro, L.; Gratton, M.; Saghar, S.; Hocine, N.A. Recycling of rubber wastes by devulcanization. Resour. Conserv. Rec. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Alfayez, S.A.; Suleiman, A.R.; Nehdi, M.L. Recycling Tire Rubber in Asphalt Pavements: State of the Art. Sustainability 2020, 12, 9076. [Google Scholar] [CrossRef]
- Masri, T.; Yagoub, M.; Rouag, A.; Benchabane, A.; Guerira, B. Characterization of a Composite Material Composed by Rubber Tire and Expanded Polystyrene Wastes. J. Compos. Adv. Mater. 2023, 33, 13–19. [Google Scholar] [CrossRef]
- Merkisz-Guranowska, A. Waste recovery of end-of-life vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 421, 032019. [Google Scholar] [CrossRef]
- Shulman, V.L. Tire recycling. In Waste; Academic Press: Cambridge, MA, USA, 2019; pp. 489–515. [Google Scholar]
- Chen, Z.; Liang, Y.; Lin, Y.; Cai, J. Recycling of waste tire rubber as aggregate in impact-resistant engineered cementitious composites. Constr. Build. Mater. 2022, 359, 129477. [Google Scholar] [CrossRef]
- Antony, A.; Provodnikova, A.; Kumar, S.; Balachandan, B. Sustainable Materials in Tire Industry: A comparative Study of Europe and Asian Markets. Glob. J. Bus. Integral Secur. Int. Conf. Bus. Integral Secur. (IBIS) 2021, 1–14. [Google Scholar]
- Sitepu, M.H.; Armayani; Matondang, A.R.; Sembiring, M.T. Used tires recycle management and processing: A review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 801, 012116. [Google Scholar] [CrossRef]
- Roychand, R.; Gravina, R.; Zhuge, Y.; Ma, X.; Youssf, O.; Mills, J. A comprehensive review on the mechanical properties of waste tire rubber concrete. Constr. Build. Mater. 2020, 237, 117651. [Google Scholar] [CrossRef]
- Tsang, H.H. Uses of Scrap Rubber Tires. In Rubber: Types, Properties and Uses, 1st ed.; Popa, G.A., Ed.; Nova Science Publisher, Inc.: New York, NY, USA, 2012; pp. 477–492. [Google Scholar]
- Ramarad, S.; Khalid, M.; Ratnam, C.T.; Luqman Chuah, A.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties, and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- Asociación de Manejo Responsible de Llantas Usadas, A.C. 2022. Available online: https://reciclallantas.org.mx/ (accessed on 26 January 2025).
- Rogachuk, B.E.; Okolie, J.A. Waste tires based biorefinery for biofuels and value-added materials production. Chem. Eng. J. Adv. 2023, 14, 100476. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Hunter, H.N.; Vo, D.V.N.; Kozinski, J.A.; Gökalp, I. Catalytic subcritical and supercritical water gasification as a resource recovery approach from waste tires for hydrogen-rich syngas production. J. Supercrit. Fluids 2019, 154, 104627. [Google Scholar] [CrossRef]
- Raffoul, S.; Garcia, R.; Escolano-Margarit, D.; Guadagnini, M.; Hajirasouliha, I.; Pilakoutas, K. Behaviour of unconfined and FRP-confined rubberized concrete in axial compression. Constr. Build. Mater. 2017, 147, 388–397. [Google Scholar] [CrossRef]
- Yadav, J.S.; Tiwari, S.K. Effect of inclusion of crumb rubber on the unconfined compressive strength and wet-dry durability of cement stabilized clayey soil. J. Build. Mater. Struct. 2016, 3, 68–84. [Google Scholar] [CrossRef]
- Liu, L.; Cai, G.; Zhang, J.; Liu, X.; Liu, K. Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering; A compressive review. Renew. Sustain. Energy Rev. 2020, 126, 109831. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C.; Panicker, V.J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. J. Clean. Prod. 2016, 112, 504–513. [Google Scholar] [CrossRef]
- Mereki, D.; Machola, B.; Mokokwe, K. Status of waste tires and management practice in Botswana. J. Air Waste Manag. Assoc. 2019, 69, 1230–1246. [Google Scholar] [CrossRef] [PubMed]
- Berendsohn, R. Our Waste Tire Problem Is Getting Worse. 2018. Available online: https://www.popularmechanics.com/cars/car-technology/a22553570/waste-tires/ (accessed on 18 December 2022).
- Rosagel, S. Reciclaje de Llantas en México. 2013. Available online: http://havelsa.com/reciclaje-de-llantas-unam/ (accessed on 18 January 2024).
- Formela, K. Sustainable development of waste tires recycling technologies recent advances, challenges and future trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. [Google Scholar] [CrossRef]
- Dabic-Miletic, S.; Simic, V.; Karagoz, S. End-of-life tire management: A critical review. Environ. Sci. Pollut. Res. 2021, 28, 68053–68070. [Google Scholar] [CrossRef]
- Kinnaman, T.C. The economics of municipal solid waste management. Waste Manag. 2009, 29, 2615–2617. [Google Scholar] [CrossRef]
- Topcu, I.B.; Unverdi, A. Scrap tires/crumb rubber. In Waste and Supplementary Cementitious Materials in Concrete; Elsevier: Amsterdam, The Netherlands, 2018; pp. 51–77. [Google Scholar]
- Evans, A.; Evans, R. The Composition of a Tyre: Typical Components; The Waste & Resources Action Programme: Banbury, UK, 2006; p. 5. [Google Scholar]
- Baranwal, K.C. Akron rubber development laboratory, ASTM standards & testing of recycle rubber. In Proceedings of the Rubber Division Meeting, San Francisco, CA, USA, 28–30 April 2003. [Google Scholar]
- Messerle, V.; Ustimenko, A. Plasma processing of rubber powder from end-of-life tires: Numerical analysis and experiment. Processes 2024, 12, 994–1011. [Google Scholar] [CrossRef]
- Ćetković, J.; Lakić, S.; Žarković, M.; Vujadinović, R.; Knežević, M.; Živković, A.; Cvijović, J. Environmental benefits of air emission reduction in the waste tire management practice. Processes 2022, 10, 787–810. [Google Scholar] [CrossRef]
- Sagara, M.; Nibeditab, K.; Manoharb, N.; Raj Kumarb, K.; Suchismitab, S.; Pradnyesha, A.; Babul Reddyc, A.; Rotimi Sadikuc, E.; Guptad, U.N.; Lachitd, P.; et al. A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Manag. 2018, 74, 110–122. [Google Scholar] [CrossRef]
- Khan, S.R.; Zeedhan, M.; Masood, A. Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor. Waste Manag. 2020, 106, 21–31. [Google Scholar] [CrossRef]
- Mckeen, L.W. The Effect of Long Term Thermal Exposure on Plastic and Elastomers; William Andrew: Norwich, NY, USA, 2004. [Google Scholar]
- Li, Y.; Zhang, S.; Wang, R.; Dang, F. Potential use of waste tire rubber as aggregate in cement concrete—A comprehensive review. Constr. Build. Mater. 2019, 225, 1183–1201. [Google Scholar] [CrossRef]
- Junqing, X.; Jiaxue, Y.; Jianglin, X.; Chenliang, S.; Wenzhi, H.; Juwen, H. High-value utilization of waste tires: A review with focus on modified carbon from pyrolysis. Sci. Total Environ. 2020, 742, 140235. [Google Scholar]
- Czajczynska, D.; Krzyzynska, R.; Jouhara, H.; Spencer, N. Use of pyrolytic gas from waste tire as a fuel: A review. Energy 2017, 134, 1121–1131. [Google Scholar] [CrossRef]
- Hita, I.; Arabiourrutia, M.; Olazar, M.; Bilbao, J.; Arandes, J.M.; Castaño Sánchez, P. Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renew. Sustain. Energy Rev. 2016, 56, 745–759. [Google Scholar] [CrossRef]
- Aziz, M.A.; Rahman, M.A.; Molla, H. Design, fabrication and performance test of a fixed bed batch type pyrolysis plant with scrap tire in Bangladesh. J. Radiat. Res. Appl. Sci. 2018, 11, 311–316. [Google Scholar] [CrossRef]
- Machin, E.B.; Pedroso, D.T.; de Carvalho, J.A. Energetic valorization of waste tires. Renew. Sustain. Energy Rev. 2017, 68, 306–315. [Google Scholar] [CrossRef]
- Abdul-Kader, W.; Haque, M.S. Sustainable tyre remanufacturing: An agent-based simulation modelling approach. Int. J. Sustain. Eng. 2011, 4, 330–347. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M. The use of deconstructed tires as elastic elements in railway tracks. Materials 2014, 7, 5903–5919. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Hernández Santana, M.; Verdejo, R.; López-Manchado, M.A. Giving a second opportunity to tire waste: An alternative path for the development of sustainable self-healingstyrene-butadiene rubber compounds overcoming the magic triangle of tires. Polymers 2019, 11, 2122. [Google Scholar] [CrossRef]
- Symeonides, D.; Loizia, P.; Zorpas, A.A. Tire waste management system in Cyprus in the framework of circular economy strategy. Environ. Sci. Pollut. Res. 2019, 26, 35445–35460. [Google Scholar] [CrossRef]
- Girskas, G.; Nagrockiené, D. Crushed rubber waste impact of concrete basic properties. Constr. Build. Mater. 2017, 140, 36–42. [Google Scholar] [CrossRef]
- De Souza, C.D.R.; D’Agosto, M.D.A. Value chain analysis applied to the scrap tire reverse logistics chain: An applied study of co-processing in the cement industry. Resour. Conserv. Recycl. 2013, 78, 15–25. [Google Scholar] [CrossRef]
- Kannan, D.; Diabat, A.; Shankar, K.M. Analyzing the drivers of end-of-life tire management using interpretive structural modeling (ISM). Int. J. Adv. Manuf. Technol. 2014, 72, 1603–1614. [Google Scholar] [CrossRef]
- Amin, S.H.; Zhang, G.; Akhtar, P. Effects of uncertainty on a tire closed-loop supply chain network. Expert. Syst. Appl. 2017, 73, 82–91. [Google Scholar] [CrossRef]
- Pereira, M.M.; Machado, R.L.; Ignacio Pires, S.R.; Pereira Dantas, M.J.; Zaluski, P.P.; Frazzon, E.M. Forecasting scrap tires returns in closed-loop supply chains in Brazil. J. Clean. Prod. 2018, 188, 741–750. [Google Scholar] [CrossRef]
- Nowakowski, P.; Król, A. The influence of preliminary processing of end-of-life tires on transportation cost and vehicle exhausts emissions. Environ. Sci. Pollut. Res. 2020, 28, 24256–24269. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía (INEGI). Economía y Sectores Productivos. Parque Vehicular. Available online: https://www.inegi.org.mx/temas/vehiculos/ (accessed on 26 January 2025).
- Arciniega, G.M.; Ávila, D.J.; Quintero, O.P. Propuesta de plan de manejo integral de llantas usadas, generadas en la ciudad de los mochis, Sinaloa. Rev. Ra Ximhai 2023, 19, 157–181. [Google Scholar] [CrossRef]
- Mrad, M.; El-Samra, R. Waste Tire Management: Lebanon Case Study. J. Waste Manag. Dispos. 2020, 3, 102–113. [Google Scholar]
- Rumyantseva, A.; Rumyantseva, E.; Berezyuk, M.; Plastinina, J. Waste recycling as an aspect of the transition to a circular economy. Int. Con. Sustain. Clim. Chang. 2020, 534, 012002. [Google Scholar] [CrossRef]
- Dobrota, D.; Dobrota, G.; Dobrescu, T.; Mohora, C. The Redesigning of Tires and the Recycling Process to Maintain an Efficient Circular Economy. Sustainability 2019, 11, 5204. [Google Scholar] [CrossRef]
- Li, W.; Wang, Q.; Jin, J.; Li, S. A life cycle assessment case study of ground rubber production from scrap tires. Int. J. Life Cycle Assess. 2014, 19, 1833–1842. [Google Scholar] [CrossRef]
- Feriha, K.M.; Hussein, R.A.; Ismail, G.A.; El-Naggar, H.M.; El-Sebaie, O.D. Feasibility study for end-of-life tire recycling in new tire production. Egypt. J. Environ. Eng. Ecol. Sci. 2014, 3, 5. [Google Scholar] [CrossRef]
- Martínez, J. An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy. Renew. Sustain. Energy. Rev. 2021, 144, 111032. [Google Scholar] [CrossRef]
- European Tyre and Rubber Manufacturers Association (ETRMA). Annual Report. 2017. Available online: https://www.etrma.org/key-topics/materials/natural-rubber/ (accessed on 26 January 2025).
- U.S. Tire Manufacturers Association (USTMA). U.S. Scrap Tire Management Summary. 2019. Available online: https://www.ustires.org/ (accessed on 26 January 2025).
- INEGI. Censo Económico. 2019. Available online: https://www.inegi.org.mx/programas/ce/2019/ (accessed on 31 December 2024).
- Available online: https://www.economia.gob.mx/datamexico/es/profile/product/rubber-and-articles-thereof (accessed on 31 December 2024).
No. | Latitude | Longitude | Zip Code | Volume per Month |
---|---|---|---|---|
1 | 23.7714937 | −99.10897795 | 87084 | 345 |
2 | 23.75838008 | −99.14054089 | 87025 | 330 |
3 | 23.73799865 | −99.13060673 | 87099 | 290 |
4 | 23.75191317 | −99.13582153 | 87020 | 355 |
5 | 23.73630059 | −99.13655438 | 87000 | 265 |
6 | 23.73754865 | −99.14562349 | 87000 | 280 |
7 | 23.74148655 | −99.15123171 | 87050 | 280 |
8 | 23.73854219 | −99.13484738 | 87058 | 275 |
9 | 23.73851576 | −99.15384217 | 87000 | 315 |
10 | 23.73800776 | −99.13065426 | 87092 | 335 |
11 | 23.75828296 | −99.1405605 | 87025 | 280 |
12 | 23.72177642 | −99.16411794 | 87070 | 255 |
13 | 23.71989183 | −99.16504888 | 87070 | 320 |
14 | 23.73835656 | −99.13498066 | 87090 | 265 |
15 | 23.72165973 | −99.16399515 | 87070 | 285 |
16 | 23.73993653 | −99.13895657 | 87050 | 275 |
17 | 23.75773567 | −99.16493846 | 87018 | 290 |
Total | 5040 |
Route | Distance Traveled (Km) per Month | Number of Tours per Month | Number of Tires Collected | Approximate Weight (Kg) |
---|---|---|---|---|
1 | 128 | 8 | 1320 | 10,560 |
2 | 168 | 8 | 1750 | 14,000 |
3 | 120 | 8 | 1970 | 15,760 |
Total | 416 | 24 | 5040 | 40,320 |
Resources | Cost | Programmed Hours | Occupation |
---|---|---|---|
Worker 1 | USD 30/h | $ 112.33 | 97.3% |
QC Inspector | USD 35/h | $ 112.33 | 28.4% |
Tire shedder | USD 111/h | $ 112.33 | 3.56% |
Binder | USD 341 piece | ||
Total | USD 4951.5 |
Resources | Cost | Programmed Hours | Occupation |
---|---|---|---|
Shredder worker | USD 30/h | 21.77 | 19% |
Supplies worker | USD 30/h | 21.77 | 16.3% |
Mixing/molding worker | USD 30/h | 21.77 | 79.6% |
QC inspector | USD 35/h | 21.77 | 61.3% |
Tire shedder | USD 111/h | 21.77 | 18.4% |
Binder | USD 343/piece | ||
Total | USD 1657 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-García, R.D.; Maldonado-Reyes, A.; Reyes-Gallegos, M.M.; Rodríguez-García, J.A.; Calles-Arriaga, C.A.; Rocha-Rangel, E. Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México. Processes 2025, 13, 394. https://doi.org/10.3390/pr13020394
López-García RD, Maldonado-Reyes A, Reyes-Gallegos MM, Rodríguez-García JA, Calles-Arriaga CA, Rocha-Rangel E. Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México. Processes. 2025; 13(2):394. https://doi.org/10.3390/pr13020394
Chicago/Turabian StyleLópez-García, Ricardo Daniel, Araceli Maldonado-Reyes, María Magdalena Reyes-Gallegos, José Amparo Rodríguez-García, Carlos Adrián Calles-Arriaga, and Enrique Rocha-Rangel. 2025. "Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México" Processes 13, no. 2: 394. https://doi.org/10.3390/pr13020394
APA StyleLópez-García, R. D., Maldonado-Reyes, A., Reyes-Gallegos, M. M., Rodríguez-García, J. A., Calles-Arriaga, C. A., & Rocha-Rangel, E. (2025). Management and Disposal of Waste Tires to Develop a Company for the Manufacture of Products Based on Recycled Rubber in Tamaulipas, México. Processes, 13(2), 394. https://doi.org/10.3390/pr13020394