Scaling-Up the Growth of TiO2 Nanostructures on Ti Arc-PVD Coatings Deposited at a Semi-Industrial Scale
Abstract
1. Introduction
2. Materials and Methods
2.1. The Ti° Coating Deposition Process
2.2. Synthesis—Electrochemical Anodization of Ti° Coating
2.3. The TiO2-Nanotubes—Ti° Coating System Analysis
3. Results
3.1. The As-Coated State of the Ti° Arc-PVD Coating
3.1.1. Microstructure, Chemical Composition; And Crystalline Phases of the Anodized arc-PVD Ti°-Coating
3.1.2. Beaker Anodization of Ti° by Arc PVD
3.2. The XRD Analysis of the TNTs
3.3. Scaling up the Anodization Process of Ti°-Coatings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horikoshi, S.; Serpone, N. Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects. Catal. Today 2020, 340, 334–346. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Dozzi, M.V.; Selli, E. TiO2-based materials for photocatalytic hydrogen production. J. Energy Chem. 2017, 26, 250–258. [Google Scholar] [CrossRef]
- Zakir, O.; Ait-Karra, A.; Idouhli, R.; Khadiri, M.; Dikici, B.; Aityoub, A.; Abouelfrida, A.; Outzourhit, A. A review on TiO2 nanotubes: Synthesis strategies, modifications, and applications. J. Solid State Electrochem. 2023, 27, 2289–2307. [Google Scholar] [CrossRef]
- Zakir, O.; Idouhli, R.; Elyaagoubi, M.; Khadiri, M.; Aityoub, A.; Koumya, Y.; Rafqah, S.; Abouelfida, A.; Outzourhit, A. Fabrication of TiO2 Nanotube by Electrochemical Anodization: Toward Photocatalytic Application. J. Nanomater. Onlinelibr. Wiley 2020, 2020, 4745726. [Google Scholar] [CrossRef]
- Dubey, R.S. Synthesis and characterization of titania nanotube arrays by electrochemical method for dye sensitized solar cells. Arch. Appl. Sci. Res. Sch. Res. Libr. 2013, 5, 28–32. Available online: https://www.scholarsresearchlibrary.com/articles/synthesis-and-characterization-of-titania-nanotube-arrays-by-electrochemical-method-for-dye-sensitized-solar-cells.pdf (accessed on 5 September 2025).
- Gong, D.; Grimes, C.A.; Varghese, O.K.; Hu, W.; Singh, R.S.; Chen, Z.; Dickey, E.C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331–3334. [Google Scholar] [CrossRef]
- Macak, J.M.; Aldabergerova, S.; Ghicov, A.; Schmuki, P. Smooth anodic TiO2 nanotubes: Annealing and structure. Phys. Status Solidi (a) 2006, 203, R67–R69. [Google Scholar] [CrossRef]
- Sopha, H.; Baudys, M.; Sepúlveda, M.; Rusek, J.; Hromadko, L.; Rodriguez-Pereira, J.; Krysa, J.; Macak, J.M. Gas phase photocatalysis on large-scale TiO2 nanotube layers for pollutant degradation: Influence of the nanotube crystallinity. ACS Appl. Nano Mater. 2023, 6, 17053–17059. [Google Scholar] [CrossRef]
- Szkoda, M.; Trzciński, K.; Zarach, Z.; Roda, D.; Łapiński, M.; Nowak, A.P. Scaling Up the Process of Titanium Dioxide Nanotube Synthesis and Its Effect on Photoelectrochemical Properties. Materials 2021, 14, 5686. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef]
- Albu, S.P.; Ghicov, A.; Macak, J.M.; Schmuki, P. 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2007, 1, R65–R67. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. ASC Publ. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yu, C.; Zhang, Q.; Liu, H.; Wang, Y. TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J. Mater. Chem. A 2018, 6, 22411–22436. [Google Scholar] [CrossRef]
- Chen, S.-A.; Nian, J.-N.; Tsai, C.-C.; Teng, H. TiO2 Nanotube-Supported Cu as the Catalyst for Selective NO Reduction with NH3. J. Air Waste Manag. Assoc. 2012, 57, 600–605. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef]
- Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Müller, J.; Spiecker, E.; Schmuki, P. Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Lett. 2014, 14, 3309–3313. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, P.; Qin, L.; Zhang, S.; Chen, B.; Zhu, Y.; Wang, B.; Zhu, X. Real role of fluoride ions in the growth of anodic TiO2 nanotubes. J. Phys. Chem. C Nanomater. Interfaces 2024, 128, 5741–5748. [Google Scholar] [CrossRef]
- Sopha, H.; Baudys, M.; Hromadko, L.; Lhotka, M.; Pavlinak, D.; Krysa, J.; Macak, J.M. Scaling up anodic TiO2 nanotube layers–Influence of the nanotube layer thickness on the photocatalytic degradation of hexane and benzene. Appl. Mater. Today 2022, 29, 101567. [Google Scholar] [CrossRef]
- Varghese, O.K.; Gong, D.; Paulose, M.; Grimes, C.A.; Dickey, E.C. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 2003, 18, 156–165. [Google Scholar] [CrossRef]
- Sulka, G.D.; Kapusta-Kołodziej, J.; Brzózka, A.; Jaskuła, M. Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim. Acta 2013, 104, 526–535. [Google Scholar] [CrossRef]
- Guo, T.; Ivanovski, S.; Gulati, K. Tuning electrolyte aging in titanium anodization to fabricate nano-engineered implants. Surf. Coat. Technol. 2022, 447, 128819. [Google Scholar] [CrossRef]
- Mohan, L.; Dennis, C.; Padmapriya, N.; Anandan, C.; Rajendran, N. Effect of Electrolyte Temperature and Anodization Time on Formation of TiO2 Nanotubes for Biomedical Applications. Mater. Today Commun. 2020, 23, 101103. [Google Scholar] [CrossRef]
- Suhadolnik, L.; Marinko, Ž.; Ponikvar-Svet, M.; Tavčar, G.; Kovač, J.; Čeh, M. Influence of Anodization-Electrolyte Aging on the Photocatalytic Activity of TiO2 Nanotube Arrays. J. Phys. Chem. C 2020, 124, 4073–4080. [Google Scholar] [CrossRef] [PubMed]
- Szaniawska-Białas, E.; Brudzisz, A.; Nasir, A.; Wierzbicka, E. Recent Advances in Preparation, Modification, and Application of Free-Standing and Flow-Through Anodic TiO2 Nanotube Membranes. Molecules 2024, 29, 5638. [Google Scholar] [CrossRef]
- Ocampo, R.A.; Echeverría, F.E. The Effects of Anodization Conditions on TiO2 Nanotubes Features Obtained Using Aqueous Electrolytes with Xanthan Gum. Inventions 2023, 8, 109. [Google Scholar] [CrossRef]
- Zazpe, R.; Prikryl, J.; Gärtnerova, V.; Nechvilova, K.; Benes, L.; Strizik, L.; Jäger, A.; Bosund, M.; Sopha, H.; Macak, J.M. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers. Langmuir ASC Publ. 2017, 33, 3208–3216. [Google Scholar] [CrossRef]
- Ng, S.; Sopha, H.; Zazpe, R.; Spotz, Z.; Bijalwan, V.; Dvorak, F.; Hromadko, L.; Prikryl, J.; Macak, J.M. TiO2 ALD Coating of Amorphous TiO2 Nanotube Layers: Inhibition of the Structural and Morphological Changes Due to Water Annealing. Front. Chem. 2019, 7, 38. [Google Scholar] [CrossRef]
- Macak, J.M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth Anodic TiO2 Nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463–7465. [Google Scholar] [CrossRef]
- Gönüllü, Y.; Haidry, A.A.; Saruhan, B. Nanotubular Cr-doped TiO2 for use as high-temperature NO2 gas sensor. Sens. Actuators B Chem. 2015, 217, 78–87. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, K.; Xue, D. Crystallization of amorphous anodized TiO2 nanotube arrays. RSC Adv. 2024, 14, 8195–8203. [Google Scholar] [CrossRef]
- Park, I.J.; Kim, D.H.; Seong, W.M.; Han, B.S.; Han, G.S.; Jung, H.S.; Yang, M.; Fan, W.; Lee, S.; Lee, J.-K.; et al. Observation of anatase nanograins crystallizing from anodic amorphous TiO2 nanotubes. CrystEngComm 2015, 17, 7346–7353. [Google Scholar] [CrossRef]
- Stiller, M.; Barzola-Quiquia, J.; Esquinazi, P.; So, S.; Hwang, I.; Schmuki, P.; Böttner, J.; Estrela-Lopis, I. Electrical transport properties of polycrystalline and amorphous TiO2 single nanotube. Nano-Struct. Nano-Objects 2017, 10, 51–56. [Google Scholar] [CrossRef]










| Temperature | Current (A) & Voltage (V) | Time (min) |
|---|---|---|
| 35 °C | 3 & 30 | 30, 45, 60, 90 |
| 6 & 60 | 30, 45, 60, 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre De Paz, N.C.; Estrada-Murillo, A.M.; Huirache-Acuña, R.; Camacho, N.; Mondragón-Rodríguez, G.C. Scaling-Up the Growth of TiO2 Nanostructures on Ti Arc-PVD Coatings Deposited at a Semi-Industrial Scale. Processes 2025, 13, 3692. https://doi.org/10.3390/pr13113692
Aguirre De Paz NC, Estrada-Murillo AM, Huirache-Acuña R, Camacho N, Mondragón-Rodríguez GC. Scaling-Up the Growth of TiO2 Nanostructures on Ti Arc-PVD Coatings Deposited at a Semi-Industrial Scale. Processes. 2025; 13(11):3692. https://doi.org/10.3390/pr13113692
Chicago/Turabian StyleAguirre De Paz, Nancy C., Aurora M. Estrada-Murillo, Rafael Huirache-Acuña, Nayeli Camacho, and Guillermo César Mondragón-Rodríguez. 2025. "Scaling-Up the Growth of TiO2 Nanostructures on Ti Arc-PVD Coatings Deposited at a Semi-Industrial Scale" Processes 13, no. 11: 3692. https://doi.org/10.3390/pr13113692
APA StyleAguirre De Paz, N. C., Estrada-Murillo, A. M., Huirache-Acuña, R., Camacho, N., & Mondragón-Rodríguez, G. C. (2025). Scaling-Up the Growth of TiO2 Nanostructures on Ti Arc-PVD Coatings Deposited at a Semi-Industrial Scale. Processes, 13(11), 3692. https://doi.org/10.3390/pr13113692

