Review on Application of Machine Vision-Based Intelligent Algorithms in Gear Defect Detection
Abstract
1. Introduction

2. Gear Defect Detection Based on Traditional Image Processing
3. Gear Defect Detection Based on Deep Learning Models
3.1. Gear Defect Detection Based on Pure Convolutional Neural Network Models
3.1.1. Gear Defect Detection Based on ResNet Architecture
3.1.2. Gear Defect Detection Based on U-Net Architecture
3.1.3. Gear Defect Detection Using YOLO Series Architecture
3.2. Gear Defect Detection Based on Region Proposal Network Integrated Models
3.2.1. Gear Detection Based on Faster R-CNN Architecture
3.2.2. Gear Defect Detection Based on Mask R-CNN Architecture
| Ref. | Year | Model | Original Model | Dataset | Experimental Results | Advantages | Disadvantages |
|---|---|---|---|---|---|---|---|
| [55] | 2022 | SR-ResNetYOLO | ResNet21 | 610 images for training and validation, and 100 images for testing | Recall 97.07%, mAP 96.66% | Improved robustness and accuracy of defect detection | Long training time and complex model structure |
| [57] | 2024 | Improve the ResNet101 network | ResNet101 | 10,080 images in the dataset for training and 4320 images in the dataset for testing | Recall 96.54%, Precision 97.33%, Accuracy 96.78% | Excellent feature extraction capability and adaptability | Weak ability to detect small defects |
| [59] | 2023 | MSSA U-Net | U-Net | A training set of 2000 images and a test set of 200 images | Recall 89.82%, Precision 87.97% | Excellent performance in multi-scale feature extraction | Slow training and reasoning due to high model complexity |
| [64] | 2024 | YOLOv5-CDG | YOLOv5 | 1206 images for Training, 206 images for Validation, and 397 images for Testing | Accuracy 99.46%, Average Precision 97% | Strong real-time detection capability, suitable for industrial applications | Dependent on background conditions and requires pre-optimization processing |
| [77] | 2023 | Improved YOLOv5 | YOLOv5 | 1200 images of gears with defects | Recall 76.7%, mAP 86.3%, Precision 91.6% | Enhanced detection rate for small defects and good resistance to noise interference | High model complexity and long training time |
| [82] | 2021 | Faster R-CNN | Faster R-CNN | 1405 images in the training set and 306 images in the test set | Recall 72%, Precision 95% | Wide applicability, capable of handling various types of gear defects | Requires a large amount of labeled data and is difficult to train |
| [87] | 2020 | Deep Mask R-CNN | Mask R-CNN | 1050 images in the training set and 450 images in the test set | Recall 87.9% | Strong scenario adaptability | Long model training time |
4. Intelligent Algorithms for Addressing Challenges in Vision Algorithms
4.1. Research on Gear Defect Detection Based on Cross-Modal Feature Alignment
4.2. Research on Gear Defect Detection Using Lightweight Models
4.3. Research on Gear Defect Detection for Solving Few-Shot Problems
4.3.1. GAN-Based Data Augmentation
Gear Defect Detection Based on Deep Convolutional Generative Adversarial Network (DCGAN) Architecture
Gear Defect Detection Using CycleGAN Architecture
4.3.2. Few-Shot Learning
Meta-Learning
Transfer Learning Combined with Physical Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| R-CNN | Region-Based Convolutional Neural Networks |
| DCGAN | Deep Convolutional Generative Adversarial Networks |
| BLCD | Bidimensional Local Characteristic-Scale Decomposition |
| LSCM | Laser Scanning Confocal Microscopy |
| SHGA-PSO | Simulated Annealing Hybrid Genetic Algorithm-Particle Swarm Optimization |
| CycleGAN | Cycle-Consistency Generative Adversarial Networks |
| FCN | Fully Convolutional Network |
| GBSU | Gear Surface Defect Detection U-Net (custom abbreviation for gear surface defect detection U-Net) |
| BiFPN | Bidirectional Feature Pyramid Network |
| SAT | Self-Adversarial Training |
| EMA | Exponential Moving Average |
| CBAM | Convolutional Block Attention Module |
| ASFF | Adaptively Spatial Feature Fusion |
| C2f | Cross-Stage Partial Fusion |
| ASEF-4H | Adaptive Spatial Feature Fusion-4 Head (custom abbreviation for adaptive spatial feature fusion with 4 heads) |
| MSSA | Multi-Scale Splicing Attention |
| ViT | Vision Transformer |
| PDCDT | Progressive Downsampling Convolutional Decoder Transformer |
| SE | Squeeze-and-Excitation |
| NMS | Non-Maximum Suppression |
| DIOU | Distance Intersection over Union |
| GNN | Graph Neural Network |
| FSL | Few-Shot Learning |
| STFT | Short-Time Fourier Transform |
Appendix A
| Evaluation Index | Definition and Applicability | Calculation Method |
|---|---|---|
| Precision | The proportion of samples correctly predicted as positive by the model to all samples predicted as positive. Suitable for scenarios where false detection is costly, as it helps reduce unnecessary false positives. | |
| Accuracy | The percentage of total sample that the model correctly predicts. It is suitable for cases where the number of samples without defects and the number of samples with defects are relatively balanced. For a problem with unbalanced categories, it may not effectively reflect the model performance. | |
| mAP | The average accuracy of each class in a multi-class or multi-label problem. It is suitable for multi-class defect detection tasks to evaluate the overall model performance. | 1. For each class, calculate the area under the Precision-Recall curve; 2. Calculate the arithmetic mean of the APs of all classes to obtain mAP. |
| Recall | The proportion of samples correctly predicted by the model as positive as a percentage of all samples that are actually positive. Suitable for scenarios with a high cost of omission, as it can detect all defects as far as possible. | |
| IoU | The ratio of the intersection area of the predicted area and the real area to the union area, which is used to measure the degree of overlap between the output box of the object detection algorithm and the real box. It is suitable for defect detection tasks with strict boundary requirements. | |
| mIoU | Calculated for each category after the IoU is averaged. It is suitable for comprehensive evaluation of multi-class image segmentation tasks. | 1. For each class, calculate the IoU between the predicted region and the real region of that class; 2. Calculate the arithmetic mean of the IoUs of all classes to obtain mIoU. |
References
- Hu, M.Z.; Wang, H.X.; Wei, P.T.; Liu, G.S.; Zhang, L.; He, Z.Q.; Liu, H.J. Multi-objective optimization of a co-rotating twin-screw gear transmission system based on heuristic search. J. Mech. Sci. Technol. 2023, 37, 5831–5841. [Google Scholar] [CrossRef]
- Lu, Z.H.; Reitschuster, S.; Tobie, T.; Stahl, K.; Liu, H.J.; Hu, X.L. Contact fatigue life prediction of PEEK gears based on CTAB-GAN data augmentation. Eng. Fract. Mech. 2024, 312, 110639. [Google Scholar] [CrossRef]
- Chen, T.M.; Zhu, C.C.; Chen, J.X.; Liu, H.J. A review on gear scuffing studies: Theories, experiments and design. Tribol. Int. 2024, 196, 109741. [Google Scholar] [CrossRef]
- Lu, W.D.; Zhang, X.L.; Jiang, X.; Hong, T.Y. Research on point cloud processing of gear 3D measurement based on line laser. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 645. [Google Scholar] [CrossRef]
- Yao, H.M.; Yu, W.Y.; Wang, X. A feature memory rearrangement network for visual inspection of textured surface defects toward edge intelligent manufacturing. IEEE Trans. Autom. Sci. Eng. 2023, 20, 2616–2635. [Google Scholar] [CrossRef]
- Liu, R.L.; Zhong, D.X.; Lyu, H.Q.; Han, J.Q. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology. Sensors 2016, 16, 1364. [Google Scholar] [CrossRef]
- Xin, Q.Y.; Pei, Y.C.; Luo, M.Y.; Wang, Z.Q.; He, L.; Liu, J.Y.; Wang, B.; Lu, H.Q. A generalized precision measuring mechanism and efficient signal processing algorithm for the eccentricity of rotary parts. Mech. Syst. Signal Process. 2023, 204, 110791. [Google Scholar] [CrossRef]
- Pei, Y.C.; Xie, H.L.; Tan, Q.C. A non-contact high precision measuring method for the radial runout of cylindrical gear tooth profile. Mech. Syst. Signal Process. 2020, 138, 106543. [Google Scholar] [CrossRef]
- Yang, W.Q.; Wang, M.H.; Tang, C.; Zheng, X.; Liu, X.W.; He, K.L. Trustworthy multi-view clustering via alternating generative adversarial representation learning and fusion. Inf. Fusion 2024, 107, 102323. [Google Scholar] [CrossRef]
- Kou, R.K.; Wang, C.P.; Yu, Y.; Peng, Z.M.; Yang, M.B.; Huang, F.Y.; Fu, Q. LW-IRSTNET: Lightweight infrared small target segmentation network and application deployment. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5621313. [Google Scholar] [CrossRef]
- Cohen, R.; Bachar, L.; Matania, O.; Bortman, J. Few-shot learning for estimating gear wear severity towards digital twinning. Eng. Fail. Anal. 2025, 170, 109330. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, Y.H.; Tan, F.; Wang, X.F.; Zhang, Y.Q.; Liao, J.; Yang, F.; Guo, Z.H. Research on an intelligent diagnosis method of mechanical faults for small sample data sets. Sci. Rep. 2022, 12, 21996. [Google Scholar] [CrossRef]
- Chen, W.Y.; Tsao, Y.R.; Lai, J.Y.; Hung, C.J.; Liu, Y.C.; Liu, C.Y. Real-Time Instance Segmentation of Metal Screw Defects Based on Deep Learning Approach. Meas. Sci. Rev. 2022, 22, 107–111. [Google Scholar] [CrossRef]
- Liu, B.; Yang, B.; Zhao, Y.L.; Li, J.Q. Low-pass U-Net: A segmentation method to improve strip steel defect detection. Meas. Sci. Technol. 2023, 34, 035405. [Google Scholar] [CrossRef]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Wang, H.; Wang, C.Z.; Liu, M.; Xu, G.W. Time-segment-wise feature fusion transformer for multi-modal fault diagnosis. Eng. Appl. Artif. Intell. 2024, 138, 109358. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Cheng, J.P.; Wu, Y.R.; Zeng, Z.Y. Low-res MobileNet: An efficient lightweight network for low-resolution image classification in resource-constrained scenarios. Multimed. Tools Appl. 2022, 81, 38513–38530. [Google Scholar] [CrossRef]
- Wang, C.C.; Chiu, C.T.; Chang, H.Y. EfficientNet-eLite: Extremely lightweight and efficient cnn models for edge devices by network candidate search. J. Signal Process. Syst. Signal Image Video Technol. 2023, 95, 657–669. [Google Scholar] [CrossRef]
- Achmad, B.; Dhomas, H.F. Lightweight Models for Real-Time Steganalysis: A Comparison of MobileNet, ShuffleNet, and EfficientNet. J. Resti 2024, 8, 737–747. [Google Scholar] [CrossRef]
- Inkawhich, N. A Global Model Approach to Robust Few-Shot SAR Automatic Target Recognition. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4004305. [Google Scholar] [CrossRef]
- Zhao, J.K.; Wang, H.X.; Peng, S.L.; Yao, Y.D. Meta supervised contrastive learning for few-shot open-set modulation classification with signal constellation. IEEE Commun. Lett. 2024, 28, 837–841. [Google Scholar] [CrossRef]
- Farooq, U.; Singh, P.; Kumar, A. A systematic review of quantum image processing: Representation, applications and future perspectives. Comput. Sci. Rev. 2025, 57, 100763. [Google Scholar] [CrossRef]
- Smalley, D.; Lough, S.D.; Holtzman, L.; Xu, K.K.; Holbrook, M.; Rosenberger, M.R.; Hone, J.C.; Barmak, K.; Ishigami, M. Detecting atomic-scale surface defects in STM of TMDs with ensemble deep learning. MRS Adv. 2024, 9, 890–896. [Google Scholar] [CrossRef]
- Guo, L.G.; Wu, S.T. FPGA Implementation of a real-time edge detection system based on an improved canny algorithm. Appl. Sci. 2023, 13, 870. [Google Scholar] [CrossRef]
- Peng-O, T.; Chaikan, P. High performance and energy efficient sobel edge detection. Microprocess. Microsyst. 2021, 87, 104368. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.B.; Zhan, H.W.; Xu, F. Registration algorithm for printed images incorporating feature registration and deformation optimization. Signal Image Video Process. 2025, 19, 176. [Google Scholar] [CrossRef]
- Hosseinian, T.; Saeidi, R.; Motamedi, S.A.; Abdollahifard, M.J.; Mansoori, R. Kaze-sar: Sar image registration using kaze detector and modified surf descriptor for tackling speckle noise. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5207612. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhang, D.H. Toward efficient edge detection: A novel optimization method based on integral image technology and canny edge detection. Processes 2025, 13, 293. [Google Scholar] [CrossRef]
- Kyriakides, G.; Daskalakis, A. A Study of Lighting Models for Automatic Detection of Regions of Interest and Surface Defects in Cast Metal Parts. Open Access Libr. J. 2023, 10, e10833. [Google Scholar] [CrossRef]
- Shao, W.; Shao, Y.Q.; Liu, Q. High-speed and accurate method for the gear surface integrity detection based on visual imaging. In Proceedings of the 2021 International Conference of Optical Imaging and Measurement (ICOIM), Xi’an, China, 27–29 August 2021. [Google Scholar] [CrossRef]
- Liu, D.X.; Cheng, J.S.; Wu, Z.T. Bidimensional local characteristic-scale decomposition and its application in gear surface defect detection. Meas. Sci. Technol. 2023, 35, 025115. [Google Scholar] [CrossRef]
- Chang, H.C.; Borghesani, P.; Smith, W.A.; Peng, Z.X. Application of surface replication combined with image analysis to investigate wear evolution on gear teeth. Wear 2019, 430, 355–368. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Z.H.; Duan, X.Y.; Tong, J.G.; Li, P.; Chen, M.; Lin, Q.L. Design of Gear Defect Detection System Based on Machine Vision. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 022025. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.J. An Approach to Fault Diagnosis for Gearbox Based on Image Processing. Shock Vib. 2016, 2016, 5898052. [Google Scholar] [CrossRef]
- Saeedi, J.; Dotta, M.; Galli, A.; Nasciuti, A.; Maradia, U.; Boccadoro, M.; Gambardella, L.M.; Giusti, A. Measurement and inspection of electrical discharge machined steel surfaces using deep neural networks. Mach. Vis. Appl. 2021, 32, 21. [Google Scholar] [CrossRef]
- Awtoniuk, M.; Majerek, D.; Myziak, A.; Gajda, C. Industrial Application of Deep Neural Network for Aluminum Casting Defect Detection in Case of Unbalanced Dataset. Adv. Sci. Technol. Res. J. 2022, 16, 120–128. [Google Scholar] [CrossRef]
- Park, J.; Shin, J.; Choi, B. Reduction of False Positives for Runtime Errors in C/C++ Software: A Comparative Study. Electronics 2023, 12, 3518. [Google Scholar] [CrossRef]
- Wang, S.Y.; Duan, P.H. Mesh stiffness calculation of defective gear system under lubrication with automated assessment of surface defects using convolutional neural networks. Mech. Syst. Signal Process. 2024, 216, 111445. [Google Scholar] [CrossRef]
- Shafiq, M.; Gu, Z.Q. Deep Residual Learning for Image Recognition. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Jaeger, B.E.; Schmid, S.; Grosse, C.U.; Goegelein, A.; Elischberger, F. Infrared Thermal Imaging-Based Turbine Blade Crack Classification Using Deep Learning. J. Nondestruct. Eval. 2022, 41, 74. [Google Scholar] [CrossRef]
- Olaf, R.; Philipp, F.; Thomas, B. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015. [Google Scholar] [CrossRef]
- Liao, D.H.; Cui, Z.H.; Zhang, X.; Li, J.; Li, W.J.; Zhu, Z.X.; Wu, N.X. Surface defect detection and classification of Si3N4 turbine blades based on convolutional neural network and YOLOv5. Adv. Mech. Eng. 2022, 14, 16878132221081580. [Google Scholar] [CrossRef]
- Chen, Z.H.; Juang, J.C. YOLOv4 Object Detection Model for Nondestructive Radiographic Testing in Aviation Maintenance Tasks. Aiaa J. 2022, 60, 526–531. [Google Scholar] [CrossRef]
- Li, X.B.; Wang, W.Q.; Sun, L.H.; Hu, B.; Zhu, L.; Zhang, J.C. Deep learning-based defects detection of certain aero-engine blades and vanes with DDSC-YOLOv5s. Sci. Rep. 2022, 12, 13067. [Google Scholar] [CrossRef]
- Liu, Y.X.; Wu, D.B.; Liang, J.W.; Wang, H. Aeroengine Blade Surface Defect Detection System Based on Improved Faster RCNN. Int. J. Intell. Syst. 2023, 2023, 1992415. [Google Scholar] [CrossRef]
- Zhang, J.; Nong, C.R.; Zhang, H.B.; Zhang, Y.Z. Engine Blade Fault detection Technology based on deep learning. Aeronaut. Engines 2022, 48, 68–75. Available online: https://link.cnki.net/doi/10.13477/j.cnki.aeroengine.2022.01.011 (accessed on 1 January 2025). (In Chinese).
- Shang, H.B.; Sun, C.; Liu, J.X.; Chen, X.F.; Yan, R.Q. Deep learning-based borescope image processing for aero-engine blade in-situ damage detection. Aerosp. Sci. Technol. 2022, 123, 107473. [Google Scholar] [CrossRef]
- Shang, H.B.; Sun, C.; Liu, J.X.; Chen, X.F.; Yan, R.Q. Defect-aware transformer network for intelligent visual surface defect detection. Adv. Eng. Inform. 2023, 55, 101882. [Google Scholar] [CrossRef]
- Upadhyay, A.; Li, J.; King, S.; Addepalli, S. A Deep-Learning-Based Approach for Aircraft Engine Defect Detection. Machines 2023, 11, 192. [Google Scholar] [CrossRef]
- Yu, L.Y.; Wang, Z.; Duan, Z.J. Detecting Gear Surface Defects Using Background-Weakening Method and Convolutional Neural Network. J. Sens. 2019, 2019, 3140980. [Google Scholar] [CrossRef]
- Jiang, J.B.; Cao, P.; Lu, Z.C.; Lou, W.M.; Yang, Y.Y. Surface Defect Detection for Mobile Phone Back Glass Based on Symmetric Convolutional Neural Network Deep Learning. Appl. Sci. 2020, 10, 3621. [Google Scholar] [CrossRef]
- Jose, J.; Deepa, O.S.; Saimurugan, M.; Krishnakumar, P.; Praveenkumar, T. Fault Diagnosis of Gearbox using Machine Learning and Deep Learning Techniques. Int. J. Eng. Adv. Technol. 2019, 9, 3940–3943. [Google Scholar] [CrossRef]
- Wu, T.E.; Huang, S.H.; Lai, C.H. Helical Gear Defect Detection System Based on Symmetrized Dot Pattern and Convolutional Neural Network. IEEE Access 2024, 12, 171328–171333. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Su, Y.T.; Yan, P.; Yi, R.Z.; Chen, J.; Hu, J.H.; Wen, C. A cascaded combination method for defect detection of metal gear end-face. J. Manuf. Syst. 2022, 63, 439–453. [Google Scholar] [CrossRef]
- Han, M.; Wu, Q.X.; Zeng, X.J. Visual Detection of Tiny Defects in Gears Based on Deep Learning. Comput. Syst. Appl. 2020, 29, 100–107. Available online: http://www.c-s-a.org.cn/1003-3254/7323.html (accessed on 2 January 2025). (In Chinese).
- Bao, C.W.; Jiang, W.; Liu, Y.Z.; Xiao, Q.L.; Wu, J. Gear defect detection based on improved ResNet101 network. Comb. Mach. Tool Autom. Process. Technol. 2024, 8, 145–153. Available online: https://link.cnki.net/doi/10.13462/j.cnki.mmtamt.2024.08.028 (accessed on 3 January 2025). (In Chinese).
- Zhou, X.; Zhang, Y.C.; Ren, Z.H.; Mi, T.C.; Jiang, Z.Y.; Yu, T.Z.; Zhou, S.H. A Unet-inspired spatial-attention transformer model for segmenting gear tooth surface defects. Adv. Eng. Inform. 2024, 62, 102933. [Google Scholar] [CrossRef]
- Qin, Y.; Xi, D.J.; Chen, W.W.; Wang, Y. Gear Pitting Measurement by Multi-Scale Splicing Attention U-Net. Chin. J. Mech. Eng. 2023, 36, 50. [Google Scholar] [CrossRef]
- Wang, Z.W.; Qin, Y.; Chen, W.W. Vision measurement of gear pitting based on DCGAN and U-Net. J. Mech. Sci. Technol. 2021, 35, 2771–2779. [Google Scholar] [CrossRef]
- Dong, L.; Chen, W.F.; Yang, S.Y.; Yu, H.Y. Automated detection of gear tooth flank surface integrity: A cascade detection approach using machine vision. Measurement 2023, 220, 113375. [Google Scholar] [CrossRef]
- Flores-Calero, M.; Astudillo, C.A.; Guevara, D.; Maza, J.; Lita, B.S.; Defaz, B.; Ante, J.S.; Zabala-Blanco, D.; Moreno, J.M.A. Traffic Sign Detection and Recognition Using YOLO Object Detection Algorithm: A Systematic Review. Mathematics 2024, 12, 297. [Google Scholar] [CrossRef]
- Hou, W.Q.; Jing, H.C. RC-YOLOv5s: For tile surface defect detection. Vis. Comput. 2024, 40, 459–470. [Google Scholar] [CrossRef]
- Jia, H.K.; Zhou, H.M.; Chen, Z.H.; Gao, R.K.; Lu, Y.; Yu, L.D. Research on Bearing Surface Scratch Detection Based on Improved YOLOV5. Sensors 2024, 24, 3002. [Google Scholar] [CrossRef]
- Zhang, S.W.; Zhong, Z.Y.; Zhu, D.H. Detection Method for Surface Defects of Metal Gears Based on Improved YOLOx Network. Laser Optoelectron. Prog. 2023, 60, 280–290. [Google Scholar]
- Hussain, M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar] [CrossRef]
- Tan, M.X.; Pang, R.M.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar] [CrossRef]
- Zhora, G. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022. [Google Scholar] [CrossRef]
- Zhu, K.B.; Lyu, H.; Qin, Y.B. Enhanced detection of small and occluded road vehicle targets using improved YOLOv5. Signal Image Video Process. 2025, 19, 168. [Google Scholar] [CrossRef]
- Tong, Y.; Luo, X.F.; Ma, L.Y.; Xie, S.R.; Yang, W.B.; Guo, Y.S. Saliency information and mosaic based data augmentation method for densely occluded object recognition. Pattern Anal. Appl. 2024, 27, 34. [Google Scholar] [CrossRef]
- Wei, C.H.; Bai, L.F.; Chen, X.Y.; Han, J. Cross-modality data augmentation for aerial object detection with representation learning. Remote Sens. 2024, 16, 4649. [Google Scholar] [CrossRef]
- Anitha, S.; Jayanthi, P.; Thangarajan, R. Detection of replica node attack based on exponential moving average model in wireless sensor networks. Wirel. Pers. Commun. 2020, 115, 1651–1666. [Google Scholar] [CrossRef]
- Chang, B.R.; Tsai, H.F.; Chang, F.Y. Applying Advanced Lightweight Architecture DSGSE-Yolov5 to Rapid Chip Contour Detection. Electronics 2024, 13, 10. [Google Scholar] [CrossRef]
- Tu, F.Q.; Qi, Y.Q.; Liu, J.; Wang, S.F. Surface Defect Detection Algorithm of Metal Gears Based on Improved YOLOv8s. J. Comput. Mod. 2025, 353, 100–106. Available online: https://kns.cnki.net/kcms2/article/abstract?v=uXGtp3S0eCAPlIlubnb-eVNLTq2L-Tm2M-jZLHqnOc1MAmaEIUPkLWf5X3cKv9qn8pK4TFYCMkbTEnRWJQILDhkel7LaSSb47bIRHHAZs7LQ6DyrRTgXVHEntoxCsSG8I_fMquBt6FdG4n0vF7vTaRKmmBab7rNdV_KV2GRfF_Ez1scGQx5uotNNR-twcdofnj2KLtvx6lY=&uniplatform=NZKPT&language=CHS (accessed on 3 January 2025). (In Chinese).
- Yang, S.A.; Zhou, L.; Wang, C.; Wang, S.H.; Tang, Y. SF-YOLO: An evolutionary deep neural network for gear end surface defect detection. IEEE Sens. J. 2024, 24, 21762–21775. [Google Scholar] [CrossRef]
- Zhang, S.W.; He, M.Q.; Zhong, Z.Y.; Zhu, D.H. An industrial interference-resistant gear defect detection method through improved YOLOv5 network using attention mechanism and feature fusion. Measurement 2023, 221, 113433. [Google Scholar] [CrossRef]
- Qian, C.R.; Su, L.C.; Li, Y.W. Steel surface defect detection based on improved YOLOv8. In Proceedings of the International Conference on Advanced Image Processing Technology (AIPT 2024), Chongqing, China, 31 May–2 June 2024; p. 13257. [Google Scholar] [CrossRef]
- Xu, L.Y.; Li, B.Y.; Mi, H.; Lu, X.Z. Improved Faster R-CNN algorithm for defect detection in powertrain assembly line. Procedia CIRP 2020, 93, 479–484. [Google Scholar] [CrossRef]
- Zhou, Z.Z.; Lu, Q.H.; Wang, Z.F.; Huang, H.J. Detection of Micro-Defects on Irregular Reflective Surfaces Based on Improved Faster R-CNN. Sensors 2019, 19, 5000. [Google Scholar] [CrossRef] [PubMed]
- Indasyah, E.; Ibrahim, F.; Syahbana, D.F.; Istiqomah, F. Automated Visual Inspection System of Gear Surface Defects Detection Using Faster RCNN. In Proceedings of the 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 14–15 November 2023. [Google Scholar] [CrossRef]
- Allam, A.; Moussa, M.; Tarry, C.; Veres, M. Detecting Teeth Defects on Automotive Gears Using Deep Learning. Sensors 2021, 21, 8480. [Google Scholar] [CrossRef] [PubMed]
- Miltenovic, A.; Rakonjac, I.; Oarcea, A.; Peric, M.; Rangelov, D. Detection and Monitoring of Pitting Progression on Gear Tooth Flank Using Deep Learning. Appl. Sci. 2022, 12, 5327. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef]
- Ma, Y.C.; Fu, H.L.; Wu, P.; Chen, X.H.; Wang, D.; Chen, S.; Cao, C.Y. Application Research of Mask R-CNN Model with Adaptive Optimization of Deep Network in Surface Defect Detection of Castings. Mod. Manuf. Eng. 2022, 4, 112–118. Available online: https://link.cnki.net/doi/10.16731/j.cnki.1671-3133.2022.04.016 (accessed on 5 January 2025). (In Chinese).
- Zhang, Y.Q.; Chu, J.; Leng, L.; Miao, J. Mask-Refined R-CNN: A network for refining object details in instance segmentation. Sensors 2020, 20, 1010. [Google Scholar] [CrossRef]
- Xi, D.J.; Qin, Y.; Wang, Y.Y. Vision Measurement of Gear Pitting Under Different Scenes by Deep Mask R-CNN. Sensors 2020, 20, 4298. [Google Scholar] [CrossRef]
- Xi, D.J.; Qin, Y.; Luo, J.; Pu, H.Y.; Wang, Z.W. Multipath Fusion Mask R-CNN With Double Attention and Its Application Into Gear Pitting Detection. IEEE Trans. Instrum. Meas. 2021, 70, 5006011. [Google Scholar] [CrossRef]
- Kansal, S.; Tripathi, R.K. Adaptive geometric filtering based on average brightness of the image and discrete cosine transform coefficient adjustment for gray and color image enhancement. Arab. J. Sci. Eng. 2020, 45, 1655–1668. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Fang, Y.M.; Wang, X.Y. Research Progress on Gear Visual Inspection Instruments and Technology. Adv. Laser Optoelectron. 2022, 59, 1415006. Available online: https://link.cnki.net/urlid/31.1690.tn.20220714.1314.367 (accessed on 5 January 2025). (In Chinese).
- Shi, Z.Y.; Li, M.C.; Sun, Y.Q.; Yu, B. Development of gear line laser three-dimensional measuring instrument. Chin. J. Sci. Instrum. 2024, 45, 95–103. Available online: https://link.cnki.net/doi/10.19650/j.cnki.cjsi.J2312129 (accessed on 6 January 2025). (In Chinese).
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Yadav, S.P.; Zaidi, S.; Mishra, A.; Yadav, V. Survey on Machine Learning in Speech Emotion Recognition and Vision Systems Using a Recurrent Neural Network (RNN). Arch. Comput. Methods Eng. 2021, 29, 1753–1770. [Google Scholar] [CrossRef]
- Ravimal, D.; Kim, H.; Koh, D.; Hong, J.H.; Lee, S.K. Image-based inspection technique of a machined metal surface for an unmanned lapping process. Int. J. Precis. Eng. Manuf. -Green Technol. 2020, 7, 547–557. [Google Scholar] [CrossRef]
- Feng, K.; Ji, J.C.; Ni, Q.; Beer, M. A review of vibration-based gear wear monitoring and prediction techniques. Mech. Syst. Signal Process. 2023, 182, 109605. [Google Scholar] [CrossRef]
- Mohammed, O.D.; Rantatalo, M.; Aidanpaa, J.; Kumar, U. Vibration signal analysis for gear fault diagnosis with various crack progression scenarios. Mech. Syst. Signal Process. 2013, 41, 176–195. [Google Scholar] [CrossRef]
- Xu, K.; Wang, B.J.; Zhu, Z.; Jia, Z.H.; Fan, C.C. A Contrastive Learning Enhanced Adaptive Multimodal Fusion Network for Hyperspectral and LiDAR Data Classification. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4700319. [Google Scholar] [CrossRef]
- Zheng, S.P.; Liu, J.F.; Jun, Z. MCAFNet: Multiscale cross-modality adaptive fusion network for multispectral object detection. Digit. Signal Process. 2025, 159, 104996. [Google Scholar] [CrossRef]
- Lu, J.Y.; Ji, W.X.; Yu, J.J.; Zhang, C.Y. Data driven deep learning fault diagnosis method based on vision transformer and multi-head attention for different working condition. Eng. Res. Express 2025, 7, 015205. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the International Conference on Learning Representations (ICLR), Virtual, 3–7 May 2021. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, S.; Xi, D. Liang Progressive downsampling transformer with convolution-based decoder and its application in gear pitting measurement. IEEE Trans. Instrum. Meas. 2023, 72, 5008709. [Google Scholar] [CrossRef]
- Sun, X.C.; Ding, H.; Li, N.; Dong, X.X.; Sun, J.C.; Zheng, G.Y. Intelligent fault diagnosis method for shearer rocker gear based on swin transformer and multiscale convolution parallel integration. IEEE Trans. Instrum. Meas. 2025, 74, 3519816. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, Y.F. SLGA-YOLO: A Lightweight Castings Surface Defect Detection Method Based on Fusion-Enhanced Attention Mechanism and Self-Architecture. Sensors 2024, 24, 4088. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.L.; He, X.Y.; Ming, W.Y. A Comprehensive Review of Deep Learning-Based PCB Defect Detection. IEEE Access 2023, 11, 139017–139038. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, M.; Huang, Z.L.; Li, X.Y.; Zhang, M.Z. Lightweight Detection of Injection Molded Gear Defects Based on VSD-YOLOv5s. Modul. Mach. Tool Autom. Manuf. Tech. 2024, 4, 145–148. Available online: https://link.cnki.net/doi/10.13462/j.cnki.mmtamt.2024.04.030 (accessed on 7 January 2025). (In Chinese).
- Yan, R.; Zhang, R.Y.; Bai, J.Q.; Hao, H.J.; Guo, W.J.; Gu, X.Y. STMS-YOLOv5: A Lightweight Algorithm for Gear Surface Defect Detection. Sensors 2023, 23, 5992. [Google Scholar] [CrossRef]
- Wang, H.T. Research on Gear Defect Detection Method Based on Machine Vision. Master’s Thesis, Tianjin Polytechnic Normal University, Tianjin, China, 25 September 2024. (In Chinese). [Google Scholar]
- GB/T 42980-2023; Standardization Administration of the People’s Republic of China. Test method for intelligent manufacturing machine vision online inspection system; Standards Press of China: Beijing, China, 2023.
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar] [CrossRef]
- Li, Y.X.; Wang, K.S. An Automatic FIR and DCGAN Model-based Fault Detection Framework for Key Components of Planetary Gearboxes under compartively Stable Conditions. In Proceedings of the 2019 Prognostics and System Health Management Conference (PHM-Qingdao), Qingdao, China, 25–27 October 2019. [Google Scholar] [CrossRef]
- Yu, Y.N.; Tang, L.H.; Liu, Z.P.; Xiang, J.W. A Novel Bearing Fault data generation strategy combining physical modeling and CycleGAN Variant for Fault Diagnosis Without Real Samples. IEEE Trans. Instrum. Meas. 2025, 74, 3505717. [Google Scholar] [CrossRef]
- Liu, B.Q.; Lv, J.W.; Fan, X.Y.; Luo, J.; Zou, T.Y. Application of an Improved DCGAN for Image Generation. Mob. Inf. Syst. 2022, 2022, 9005552. [Google Scholar] [CrossRef]
- Zhou, K.; Diehl, E.; Tang, J. Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations. Mech. Syst. Signal Process. 2023, 185, 109772. [Google Scholar] [CrossRef]
- Wang, G.; Shi, H.B.; Chen, Y.F.; Wu, B. Unsupervised image-to-image translation via long-short cycle-consistent adversarial networks. Appl. Intell. 2023, 53, 17243–17259. [Google Scholar] [CrossRef]
- Chen, R.C.; Fan, M.Z.; Manongga, W.E.; Sub-r-pa, C. Evaluating image-to-image translation techniques for simulating physical conditions of traffic signs. J. Adv. Inf. Technol. 2024, 15, 1019–1024. [Google Scholar] [CrossRef]
- Shao, G.F.; Huang, M.; Gao, F.Q.; Liu, T.D.; Li, L.D. DuCaGAN: Unified Dual Capsule Generative Adversarial Network for Unsupervised Image-to-Image Translation. IEEE Access 2020, 8, 154691–154707. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.W.; Xi, D.J. Tree CycleGAN with maximum diversity loss for image augmentation and its application into gear pitting detection. Appl. Soft Comput. 2022, 114, 108130. [Google Scholar] [CrossRef]
- Sharma, G.; Kaur, T.; Mangal, S.K.; Kohli, A. Investigating bearing and gear vibrations with a Micro-Electro-Mechanical Systems (MEMS) and machine learning approach. Results Eng. 2024, 24, 103499. [Google Scholar] [CrossRef]
- Niu, P.; Cheng, Q.; Zhang, X.L.; Liu, Z.F.; Zhao, Y.S.; Yang, C.B. Research on High-Precision Measurement Method for Small-Size Gears with Small-Modulus. Sensors 2024, 24, 5413. [Google Scholar] [CrossRef]
- Borghesani, P.; Smith, W.A.; Zhang, X.; Feng, P.; Antoni, J.; Peng, Z. A new statistical model for acoustic emission signals generated from sliding contact in machine elements. Tribol. Int. 2018, 127, 412–419. [Google Scholar] [CrossRef]
- Nico, H.; Peng, Z.X.; Pietro, B. Bridging the Trust Gap: Evaluating Feature Relevance in Neural Network-Based Gear Wear Mechanism Analysis with Explainable AI. Tribol. Int. 2023, 187, 108670. [Google Scholar] [CrossRef]
- Mattera, G.; Polden, J.; Norrish, J. Monitoring the gas metal arc additive manufacturing process using unsupervised machine learning. Weld. World 2024, 68, 2853–2867. [Google Scholar] [CrossRef]
- Ni, X.F.; Ma, Z.J.; Liu, J.W.; Shi, B.; Liu, H.L. Attention Network for Rail Surface Defect Detection via Consistency of Intersection-over-Union(IoU)-Guided Center-Point Estimation. IEEE Trans. Ind. Inform. 2022, 18, 1694–1705. [Google Scholar] [CrossRef]
- Huang, Y.F.; Huang, Z.W.; Jin, T. DEU-Net: A Multi-Scale Fusion Staged Network for Magnetic Tile Defect Detection. Appl. Sci. 2024, 14, 4724. [Google Scholar] [CrossRef]
- Yang, S.; Deng, C.Y.; Chuan, L. Assessment of gear failure severity in wind turbines based on few-shot learning and graph neural networks. Eng. Res. Express 2024, 6, 045586. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhou, S.; Zheng, Y.; Xu, X. Review on Application of Machine Vision-Based Intelligent Algorithms in Gear Defect Detection. Processes 2025, 13, 3370. https://doi.org/10.3390/pr13103370
Zhang D, Zhou S, Zheng Y, Xu X. Review on Application of Machine Vision-Based Intelligent Algorithms in Gear Defect Detection. Processes. 2025; 13(10):3370. https://doi.org/10.3390/pr13103370
Chicago/Turabian StyleZhang, Dehai, Shengmao Zhou, Yujuan Zheng, and Xiaoguang Xu. 2025. "Review on Application of Machine Vision-Based Intelligent Algorithms in Gear Defect Detection" Processes 13, no. 10: 3370. https://doi.org/10.3390/pr13103370
APA StyleZhang, D., Zhou, S., Zheng, Y., & Xu, X. (2025). Review on Application of Machine Vision-Based Intelligent Algorithms in Gear Defect Detection. Processes, 13(10), 3370. https://doi.org/10.3390/pr13103370

