Cooperative Failure Modes of Overlying Strata and Stressed Distribution Mechanism in Shallow Coal Seam Mining
Abstract
1. Introduction
2. Laboratory Studies and Input Parameters for Numerical Analyses
3. Stress Distribution Mechanisms in Shallow Coal Mine Overburden
3.1. Stress Distribution in Mining Numerical Simulations
3.2. Results of Triaxial Compression Tests
Parameter | Class I | Class II | Class III | Class IV |
---|---|---|---|---|
Uniaxial Compressive (MPa) | 78.4 | 82.1 | 98.1 | 106.7 |
Cohesion, c (MPa) | 18.2 | 20.7 | 25.9 | 32.4 |
Friction Angle, φ (°) | 34.1 | 36.5 | 39.2 | 41.6 |
Young’s Modulus (GPa) | 8.7 | 10.3 | 15.2 | 18.6 |
Poisson’s Ratio | 0.27 | 0.25 | 0.23 | 0.21 |
Dry Density (g/cm3) | 2.41 | 2.49 | 2.58 | 2.68 |
Effective Porosity (%) | 8.7 | 6.3 | 3.8 | 1.2 |
4. Mechanical Modeling of Overlying Rock Cooperative Failure
4.1. Stress Distribution Mechanisms in Mining Numerical Simulations
4.2. Development Mechanism of Overlying Rock Fractures During Shallow Coal Seam Mining
5. Conclusions
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Z.X. Study on the Regulation of Strata Movement and the Predication of Surface Movement caused by Shallow Seam mining. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2017. Available online: https://d.wanfangdata.com.cn/thesis/ChNNaW5lclRoZXNpczIwMjMwMzIxEglEMDEzMDM0NDAaCHEzMml2NDhw (accessed on 17 September 2025).
- Shi, P.W.; Shao, X.P. Function of destruction and instability of basic roof in top coal caving of steep seams. J. Liaoning Tech. Univ. (Nat. Sci.) 2006, 25, 641–644. Available online: https://d.wanfangdata.com.cn/periodical/ChVQZXJpb2RpY2FsQ0hJMjAyNTA2MjISE2xuZ2Nqc2R4eGIyMDA2MDUwMDEaCG9qeDlld3hv (accessed on 17 September 2025).
- Hou, Z.J. Concept of both short voussoir beam and step beam in shallow seam and voussoir beam theory. J. China Coal Soc. 2008, 33, 1201–1204. Available online: https://d.wanfangdata.com.cn/periodical/ChVQZXJpb2RpY2FsQ0hJMjAyNTA2MjISDW10eGIyMDA4MTEwMDEaCGdhZXk0Zzlv (accessed on 17 September 2025).
- Zhang, N.; Han, C.L.; Kan, J.G. Theory and practice of surrounding rock control for pillarless gob-side entry retaining. J. China Coal Soc. 2014, 39, 1635–1641. [Google Scholar] [CrossRef]
- Wang, G.F.; Pang, Y.H.; Li, M.Z. Hydraulic support and coal wall coupling relationship in ultra large height mining face. J. China Coal Soc. 2017, 42, 518–526. [Google Scholar] [CrossRef]
- Wang, J.C.; Tang, Y.S.; Wang, Z.H.; Li, Z.; Zhang, X. Characteristics of micro seismic events and damage degree calculationmethod in kilometer deep fully mechanical longwall pane. J. China Univ. Min. Technol. 2023, 52, 417–431. [Google Scholar] [CrossRef]
- Hou, Z.J.; Fu, E.J. Long wall interval mining method and its application. J. Xi’an Univ. Sci. Technol. 2009, 29, 1–6. [Google Scholar] [CrossRef]
- Huang, Q.X. Simulating on damage law of disturbed thick sandy soil layer and transference of load in shallow seam. J. Chang. Univ. (Nat. Sci. Ed.) 2003, 599, 25–27. [Google Scholar] [CrossRef]
- Yu, X.Y.; Mu, C.; Li, J.F. Development law of water-conducting fracture zone in overlying rock with layered mining under strong water-bearing body in Barapukuria coal mine. J. China Coal Soc. 2022, 47, 29–38. [Google Scholar] [CrossRef]
- Xu, J.L.; Lu, W.; Chen, X.J.; Hu, G.Z.; Xie, J.L.; Wang, X.Z.; Zhu, W.B. Influencing factors of accumulative effect of overburden strata expansion induced by stress relief. J. China Coal Soc. 2022, 47, 115–127. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhou, H.W.; Zhong, J.C.; Zhang, L.; Wang, C.S.; An, L. Study on energy evolution and permeability characteristics of deep coal under triaxial cyclic loading-unloading. Chin. J. Rock Mech. Eng. 2018, 37, 2676–2684. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.P. Similarity simulation and empirical study on the height of “three zones” in mining-induced overburden strata. J. Min. Saf. Eng. 2014, 31, 249–254. [Google Scholar] [CrossRef]
- Lai, X.P.; Zhu, H.Y.; Guo, Z.A.; Gu, H.L.; Li, X.T.; Zhao, Q.S.; Shan, P.F. Breaking dynamic load mechanism and application of high key strata in gully area of shallow coal seam. J. Min. Saf. Eng. 2024, 41, 879–888. [Google Scholar] [CrossRef]
- Huang, Q.X.; Zhao, C.; Du, J.W.; Gao, B.; Mao, X.W.; Yang, H.W. Creep effect of roadway sides and delayed support in rapid excavation of shallow-buried coal seams. J. Xi’an Univ. Sci. Technol. 2023, 43, 219–227. [Google Scholar] [CrossRef]
- Liu, C.Y.; Li, J.W.; Zhao, J.; Chen, Y.Q.; Zhang, H.R.; Yu, X. Dynamic strata pressure mechanism and distribution characteristics of overburden air leakage fissures in the condition of shallow thick coal seam in gully area. J. Min. Saf. Eng. 2023, 40, 965–971. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Sun, X.Y.; Yao, X.; Wang, Z.J.; Jia, S.J.; An, N. Study on dynamic development of surface fractures in shallow coal seam mining through gully. Saf. Coal Mines 2023, 54, 136–142. [Google Scholar] [CrossRef]
- Xie, D.H.; Wang, J.W.; Li, M.F.; Guo, S.Q.; Wang, R.Y.; Ma, Z.Y.; Du, C.J. Research on development height of overlying water-conducting fault zone in shallow seam mining in Shennan Mining Area. Saf. Coal Mines 2023, 54, 221–227. [Google Scholar] [CrossRef]
- Miao, Y.P.; Wei, B.; Ji, Z.K.; Chen, X.Y.; Lu, B.; Xue, X.Y. Typical model of water damage in Jurassic shallow coal seam mining and its zoning. Saf. Coal Mines 2021, 52, 75–82. [Google Scholar] [CrossRef]
- Sun, B.Y.; Zhang, P.S.; Wu, R.X.; Guo, L.Q. Dynamic detection and analysis of overburden deformation and failure in a mining face using distributed optical fiber sensing. J. Geophys. Eng. 2018, 15, 2545–2555. [Google Scholar] [CrossRef]
- Ulusay, R.; Hudson, J.A. (Eds.) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006; International Society for Rock Mechanics: Ankara, Turkey, 2007; Available online: https://isrm.net/isrm/page/show/935 (accessed on 17 September 2025).
- Palchik, V. Formation of fractured zones in overburden due to longwall mining. Environ. Geol. 2003, 44, 28–38. [Google Scholar] [CrossRef]
- Abdellah, W.R.; Ali, M.A.; Fahmy, A.H. Numerical simulation of the mechanical response of rock samples under uniaxial and triaxial loading. Min. Miner. Depos. 2023, 17, 1–11. [Google Scholar] [CrossRef]
- Ju, J.F.; Xu, J.L. Structural characteristics of key strata and strata behaviour of a fully mechanized longwall face with 7.0 m height chocks. Int. J. Rock Mech. Min. Sci. 2013, 58, 46–54. [Google Scholar] [CrossRef]
- Zhang, D.S.; Fan, G.W.; Liu, Y.D.; Ma, L. Field trials of aquifer protection in longwall mining of shallow coal seams in China. Int. J. Rock Mech. Min. Sci. 2010, 47, 908–914. [Google Scholar] [CrossRef]
- Pambela, A.R.; Ma, C.; Maeda, T.; Iijima, K. Stokes wave traveling along a thin elastic plate floating at water surface. J. Fluids Struct. 2023, 120, 103919. [Google Scholar] [CrossRef]
- Nazarov, S.A. Deformation of a Thin Elastic Plate with a Fixed Edge and Attached Rods. Part 1: The Static Problem. Sib. Math. J. 2025, 66, 728–748. [Google Scholar] [CrossRef]
- Alejano, L.R.; Alonso, E. Considerations of the dilatancy angle in rocks and rock masses. Int. J. Rock Mech. Min. Sci. 2005, 42, 481–507. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. The Hoek-Brown failure criterion and GSI—2018 edition. J. Rock Mech. Geotech. Eng. 2019, 11, 445–463. [Google Scholar] [CrossRef]
- Xie, H.P.; Gao, F.; Ju, Y. Research and development of rock mechanics in deep ground engineering. Chin. J. Rock Mech. Eng. 2015, 34, 2161–2178. [Google Scholar] [CrossRef]
- Itasca Consulting Group. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User’s Guide; Itasca: Minneapolis, MN, USA, 2020; Available online: https://www.itascacg.com/software/FLAC3D (accessed on 17 September 2025).
- El Jarroudi, M.; El Merzguioui, M.; Er-Riani, M.; Lahrouz, A.; El Amrani, J. Dimension reduction analysis of a three-dimensional thin elastic plate reinforced with fractal ribbons. Eur. J. Appl. Math. 2023, 34, 838–869. [Google Scholar] [CrossRef]
- Clougherty, D.P.; Heinrich, E. Quantum and thermal fluctuations of a thin elastic plate. Phys. Rev. B 2020, 101, 144101. [Google Scholar] [CrossRef]
- Wang, J.A.; Park, H.D. Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn. Undergr. Space Technol. 2001, 16, 49–57. [Google Scholar] [CrossRef]
- Zhang, J.; He, M.C.; Shimada, H.; Wang, Y.; Hou, S.; Liu, B.; Yang, G.; Zhou, P.; Li, H.; Wu, X. Similar model study on the principle of balanced mining and overlying strata movement law in shallow and thin coal seam based on N00 mining method. Eng. Fail. Anal. 2023, 152, 107457. [Google Scholar] [CrossRef]
- Mendeski, A.J. Seismic Monitoring in Mines; Chapman & Hall: London, UK, 1997. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zhang, K.N.; Ling, C.W.; Guo, J.; Sun, B. A novel method combining strata movement and UAV infrared remote sensing technology to evaluate mining ground damage. Int. J. Coal Sci. Technol. 2024, 11, 83. [Google Scholar] [CrossRef]
- Adhikary, D.P.; Guo, H. Modelling of longwall mining-induced strata permeability change. Rock Mech. Rock Eng. 2015, 48, 345–359. [Google Scholar] [CrossRef]
- Mu, C.; Yu, X.; Zhao, B.; Zhang, D.; Mao, X.; Zhu, J.; Olawumi, T.O. The formation mechanism of surface landslide disasters in the mining area under different slope angles. Adv. Civ. Eng. 2021, 2021, 6697790. [Google Scholar] [CrossRef]
- Kang, H.P.; Lv, H.W.; Zhang, X.; Gao, F.; Tian, J.; Yi, Z. A new ground control measure for double-use entries in underground coal mines. Int. J. Rock Mech. Min. Sci. 2022, 160, 105266. [Google Scholar] [CrossRef]
- Vu, T.T.; Do, S.A. Determination of the rock mass displacement zone by numerical modeling method when exploiting the longwall at the Nui Beo Coal Mine, Vietnam. Min. Miner. Depos. 2023, 17, 59–66. [Google Scholar] [CrossRef]
- Zhu, J.; Li, W.; Wang, Z.; Yang, Z.; Li, X.; Wang, Q. Evaluation and influence of coal mining on groundwater resources in arid region: A case study of Dananhu No. 7 colliery, Xinjiang, Western China. J. Clean. Prod. 2025, 499, 145225. [Google Scholar] [CrossRef]
- Xie, X.S.; Hou, E.K.; Zhao, B.C.; Feng, D.; Hou, P. Investigating the damage characteristics of overburden and dynamic evolution mechanism of surface cracks in gently inclined multi-seam mining: A case study of Hongliu coal mine. Environ. Technol. Innov. 2024, 36, 103897. [Google Scholar] [CrossRef]
- Zhao, H.L.; Sun, H.F.; Zhang, Y.Y.; Liu, R.; Chen, L.; Liu, S. Assessing goaf in steep coal seam over complex topography using semi-airborne transient electromagnetic method: A case study in Xinjiang China. Bull. Eng. Geol. Environ. 2025, 84, 342. [Google Scholar] [CrossRef]
- Ning, J.G.; Wang, J.; Tan, Y.L.; Xu, Q. Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining. Int. J. Min. Sci. Technol. 2020, 30, 207–215. [Google Scholar] [CrossRef]
Reference | Study Focus | Key Findings | Relevance to Current Study |
---|---|---|---|
Abdellah et al. (2023) | Rock response under triaxial loading | Stepwise confinement captures brittle-ductile transition | Validates our experimental design |
Hoek E (2018) | FLAC3D constitutive models | Validated Mohr-Coulomb for strata simulation | Basis for our elastoplastic model |
Zhang et al. (2024) | Fracture network evolution | Tensile-shear composite failure dominates | Aligns with our fracture mechanism |
Adhikary & Guo (2015) | Permeability change in strata | Goaf expansion alters stress dissipation | Context for our stress attenuation analysis |
Vu & Do (2023) | Stress zones in longwall mining | Stress concentration migrates with excavation advance | Supports our staged stress evolution |
Monitoring Point ID | 1# | 2# | 3# | 4# | 5# | 6# | 7# | 8# |
---|---|---|---|---|---|---|---|---|
Experimental Results | 5.62 | 10.35 | 10.46 | 3.71 | 5.97 | 3.83 | 0.92 | 1.12 |
Numerical Simulation | 10.51 | 10.13 | 9.35 | 2.29 | 2.35 | 2.19 | 2.33 | 2.47 |
Discrepancy (%) | 4.89 | 0.22 | 1.11 | 1.42 | 3.62 | 1.64 | 1.41 | 1.35 |
Mine | Year | Aquiclude Thickness (m) | Fracture Height (m) | Inflow Rate (m3/h) | Trigger |
---|---|---|---|---|---|
Shangwan | 2019 | 42 | 48 | 12,000 | Paleochannel breach |
Bulianta | 2021 | 38 | 41 | 3200 | Fault activation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, C.; Zhai, X.; Zhao, B.; Yu, X.; Zhang, J.; Chen, H.; Zhu, J. Cooperative Failure Modes of Overlying Strata and Stressed Distribution Mechanism in Shallow Coal Seam Mining. Processes 2025, 13, 3033. https://doi.org/10.3390/pr13103033
Mu C, Zhai X, Zhao B, Yu X, Zhang J, Chen H, Zhu J. Cooperative Failure Modes of Overlying Strata and Stressed Distribution Mechanism in Shallow Coal Seam Mining. Processes. 2025; 13(10):3033. https://doi.org/10.3390/pr13103033
Chicago/Turabian StyleMu, Chi, Xiaowei Zhai, Bingchao Zhao, Xueyi Yu, Jianhua Zhang, Hui Chen, and Jun Zhu. 2025. "Cooperative Failure Modes of Overlying Strata and Stressed Distribution Mechanism in Shallow Coal Seam Mining" Processes 13, no. 10: 3033. https://doi.org/10.3390/pr13103033
APA StyleMu, C., Zhai, X., Zhao, B., Yu, X., Zhang, J., Chen, H., & Zhu, J. (2025). Cooperative Failure Modes of Overlying Strata and Stressed Distribution Mechanism in Shallow Coal Seam Mining. Processes, 13(10), 3033. https://doi.org/10.3390/pr13103033