Characterization of Flavoured Olive Oils of ‘Madural’ Variety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
2.2. Olives Characterization
2.3. Quality Parameters
2.4. Purity Parameters
2.5. Minor Components
2.6. Oxidative Stability
2.7. Microbiological Study
2.7.1. Content of Microorganisms at 30 °C
2.7.2. Content of Coliform Bacteria at 30 °C
2.7.3. Coagulase+ Staphylococci Count
3. Results
3.1. Olive Determinations
3.2. Quality Parameters
3.2.1. Humidity
3.2.2. Acidity
3.2.3. Peroxide Value
3.2.4. K232, K270 and ΔK
3.2.5. Sensory Evaluation
3.3. Purity Parameters
3.3.1. Fatty Acid Profile
3.3.2. Wax
3.3.3. Sterols
3.3.4. Erythrodiol and Uvaol
3.3.5. Phenolic Compounds
3.3.6. Tocopherols
3.4. Oxidative Stability
3.5. Microbiological Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gambacorta, G.; Faccia, M.; Pati, S.; Lamacchia, C.; Baiano, A.; La Notte, E. Changes in the chemical and sensorial profile of extra virgin olive oils flavoured with herbs and spices during storage. J. Food Lipids 2007, 14, 202–215. [Google Scholar] [CrossRef]
- Baiano, A.; Gambacorta, G.; La Notte, E. Aromatization of olive oil. Transw. Res. Netw. 2010, 661, 1–29. [Google Scholar]
- Abo, B.; Bevan, J.; Greenway, S.; Healy, B.; McCurdy, S.M.; Peutz, J.; Wittman, G. Acidification of Garlic and Herbs for Consumer Preparation of Infused Oils. Food Prot. Trends 2013, 34, 247–257. [Google Scholar]
- Moustakime, Y.; Hazzoumi, Z.; Joutei, K.A. Aromatization of virgin olive oil by seeds of Pimpinella anisum using three different methods: Physico-chemical change and thermal stability of flavoured oils. Grain Oil Sci. Technol. 2021, 4, 108–124. [Google Scholar] [CrossRef]
- Sousa, A.; Casal, S.; Malheiro, R.; Lamas, R.; Bento, A.; Pereira, J.A. Aromatized olive oils: Influence of flavouring in quality, composition, stability, antioxidants, and antiradical potential. LWT Food Sci. Technol. 2015, 60, 22–28. [Google Scholar] [CrossRef]
- Fennema, O.R. Química de Los Alimentos, 2nd ed.; ACRIBIA: Zaragoza, Spain, 2000. [Google Scholar]
- Morales, M.A.; Przbylski, R. Olive Oil Oxidation. In Chemistry and Technology, 2nd ed.; Boskou, D., Ed.; Department of Chemistry, Aristotle University of Thessaloniki: Thessaloniki, Greece, 2003. [Google Scholar]
- Matos, L.C.; Pereira, J.A.; Andrade, P.; Oliveira, M. Evaluation of a numerical method to predict the polyphenols content in monovarietal olive oils. Food Chem. 2007, 102, 976–983. [Google Scholar] [CrossRef]
- Guedes-Vaz, C. Azeite de Trás-os-Montes. Influência da Localização do Olival e das Cultivares nas Características do Azeite. Instituto Piaget; Colecção Estudos e Documentos: Lisboa, Portugal, 2011. [Google Scholar]
- Custódio, T. Azeites Virgem Extra Comerciais: Composição em Compostos Voláteis e Relação com Parâmetros Químicos de Qualidade. Master’s Thesis, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal, 2009. [Google Scholar]
- Lamas, S.; Rodrigues, N.; Peres, A.M.; Pereira, J.A. Flavoured and fortified olive oils—Pros and cons. Trends Food Sci. Technol. 2022, 124, 108–127. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C.; Gambacorta, G.; Notte, E.L. Changes in quality indices, phenolic content and antioxidant activity of flavoured olive oils during storage. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 1083–1092. [Google Scholar] [CrossRef]
- Bittencourt Fagundes, M.; Ballus, C.A.; Perceval Soares, V.; de Freitas Ferreira, D.; Sena Vaz Leães, Y.; Sasso Robalo, S. Characterization of olive oil flavoured with Brazilian pink pepper (Schinus terebinthifolius Raddi) in different maceration processes. Food Res. Int. 2020, 137, 109593. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; Figueiredo-González, M.; González-Barreiro, C.; Simal-Gándara, J.; Salvador, M.D.; Cancho-Grande, B. State of the art on functional virgin olive oils enriched with bioactive compounds and their properties. Int. J. Mol. Sci. 2017, 18, 668. [Google Scholar] [CrossRef] [Green Version]
- Sena-Moreno, E.; Alvarez-Ortí, M.; Serrano-Díaz, J.; Pardo, J.E.; Carmona, M.; Alonso, G.L. Olive oil aromatization with saffron by liquid–liquid extraction. J. Food Sci. Technol. 2018, 55, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- International Olive Council Reunión Extraordinaria. Madrid. 2014. Available online: https://www.olimerca.com/noticiadet/el-coi-se-pronuncia-sobre-los-aceites-de-oliva-con-aditivos/62dbad318a564a84781316b96554b9b6 (accessed on 8 July 2014).
- COI/T.15/NC No 3/Rev; Trade Standard Applying to Olive Oils and Olive Pomace Oils. International Olive Council: Madrid, Spain, 18 June 2022.
- Regulation Nº 136/66/EEC Establishing a Common Organization of the Market in Oils and Fats. Off. J. 3025–3066. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31966R0136 (accessed on 1 January 2023).
- UNE 55031:1973 Fats; Determination of Humidity and Volatile Matters in Olive Grease. AENOR: Madrid, Spain.
- UNE 55030:1961; Determination of the Content in Total Fat of Olives. AENOR: Madrid, Spain.
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. International Organization for Standardization: Geneva, Switzerland.
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) End Point Determination. International Organization for Standardization: Geneva, Switzerland.
- Commission Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Off. J. Eur. Communities 1991, 1–15. Available online: http://extwprlegs1.fao.org/docs/pdf/eur40621.pdf (accessed on 1 January 2023).
- Commission Delegated Regulation (EU) 2016/2095 Amending Regulation (EEC) No. 2568/91 on the Characteristics of Olive Oil and Olive-Residue oil and on the Relevant Methods of Analysis. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R2095&rid=5 (accessed on 1 January 2023).
- COI/T.20/Doc.Nº 5 of 2007. Sensory Analysis of Oils. International Olive Council: Madrid, Spain.
- Cunha, S.C.; Amaral, J.S.; Fernandes, J.O.; Oliveira, M.B.P.P. Quantification of tocopherols and tocotrienols in Portuguese olive oils using HPLC with three different detection systems. J. Agric. Food Chem. 2006, 54, 3351–3356. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Roncero, A.; Janer del Valle, C.; Janer del Valle, M.L. Determinación de polifenoles totales del aceite de oliva. Grasas Y Aceites 1973, 22, 350–355. [Google Scholar]
- NP 4405; Microbiologia alimentar: Regras Gerais para a Contagem de Microrganismos. Contagem de Colónias a 30 °C. Instituto Português da Qualidade, Ministério da Economia, da Inovação e do Desenvolvimento: Caparica, Portugal, 2002.
- NP 3788; Regras Gerais para Contagem de Coliformes a 30°C. Instituto Português da Qualidade, Ministério da Economia, da Inovação e do Desenvolvimento: Caparica, Portugal, 1990.
- ISO 6888–1; Microbiologia dos Alimentos. Método para a Contagem de Estafilococos Coagulase. International Organization for Standardization: Geneva, Switzerland, 1999.
- Barranco, D.; Fernández-Escobar, R.; Rallo, L.; Rallo, L.E.c.d.o. Coedición. Junta de Andalucia—Consejeria de Agricultura y Pesca; Ediciones Mundi-Prensa: Madrid, Spain, 1999; pp. 511–596. [Google Scholar]
- Gouveia, J. Azeites Virgens do Alto Alentejo: Comportamentos Químico, Tecnológico e Sensorial. Dissertação para Obtenção do grau de Doutor; Instituto Superior de Agronomia de Lisboa: Lisboa, Portugal, 1995. [Google Scholar]
- García, J.M.; Yousfi, K. Non-destructive and objective methods for the evaluation of the maturation level of olive fruit. Eur. Food Res Technol. 2005, 221, 538–541. [Google Scholar] [CrossRef]
- Kasimoglu, Z.; Tontul, I.; Soylu, A.; Gulen, K.; Topuz, A. The oxidative stability of flavoured virgin olive oil: The effect of the water activity of rosemary. J. Food Meas. Charact. 2018, 12, 2080–2086. [Google Scholar] [CrossRef]
- Rodrigues, N.; Silva, K.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. The use of electronic nose as alternative non-destructive technique to discriminate flavoured and unflavoured olive oils. Foods 2021, 10, 2886. [Google Scholar] [CrossRef]
- Soares, V.P.; Fagundes, M.B.; Guerra, D.R.; Leães YS, V.; Speroni, C.S.; Robalo, S.S. Ultrasound assisted maceration for improving the aromatization of extra-virgin olive oil with rosemary and basil. Food Res. Int. 2020, 135, 109305. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Grati-Kamoun, N.; Attia, H. Physico-chemical change and heat stability of extra virgin olive oils flavoured by selected Tunisian aromatic plants. Food Chem. Toxicol. 2009, 47, 2613–2619. [Google Scholar] [CrossRef]
- Seabra, L.M.J.; Damasceno, K.S.F.S.C.; Andrade, S.A.C.; Dantas, M.M.G.; Soares, N.K.M.; Pedrosa, L.F.C. Effect of Rosemary on the quality characteristics of white shrimp (Litopenaeus Vannemei). J. Food Qual. 2011, 34, 363–369. [Google Scholar] [CrossRef]
- Baiano, A.; Previtali, M.A.; Viggiani, I.; Varva, G.; Squeo, G.; Paradiso, V.M. As oil blending affects physical, chemical, and sensory characteristics of flavoured olive oils. Eur. Food Res. Technol. 2016, 242, 1693–1708. [Google Scholar] [CrossRef]
- Benmoussa, H.; Farhat, A.; Elfalleh, W.; di Maio, I.; Servili, M.; Romdhane, M. A rapid application to flavour the olive oil with dried rosmarinus officinalis L. leaves: Microwave-assisted maceration. J. Food Process. Preserv. 2016, 41, e12885. [Google Scholar] [CrossRef]
- Damechki, M.; Sotiropoulou, S.; Tsimidou, M. Antioxidant and pro-oxidant factors in oregano and rosemary gourmet olive oils. Grasas Y Aceites 2001, 52, 207–213. [Google Scholar]
- Taleb, S.A.; Boutoial, K.; Kzaiber, F.; Oussama, A. Effect of aromatization by aromatic plants on the physicochemical, sensorial and oxidative stability of Moroccan virgin olive oil. Int. J. Chem. Mater. Environ. Res. 2016, 3, 73–77. [Google Scholar]
- Mestre, J.J.M. Extra Virgin Oil Macerated with Tuber Melanosporum, Boletus Edulis and Addition of Edible Gold Particles. Dissertation to obtain the Master’s Degree in Food Engineering presented at the Escola Superior Agrária of the Polytechnic; Institute of Beja: Beja, Portugal, 2017. [Google Scholar]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [PubMed]
Season | Average Weight (g) | Average Endocarp Weight (g) | Average Pulp Weight (g) | Pulp/Stone Ratio |
---|---|---|---|---|
2015/2016 | 3.12 ± 0.20 | 0.59 ± 0.10 | 2.52 ± 0.16 | 4.23 ± 0.21 |
2016/2017 | 3.17 ± 0.26 | 0.61 ± 0.10 | 2.54 ± 0.22 | 4.15 ± 0.18 |
Samples | February 2016 | March 2016 | April 2016 | December 2016 | February 2017 | March 2017 | April 2017 | December 2017 |
---|---|---|---|---|---|---|---|---|
Acidity (% oleic acid) | ||||||||
MO | 0.24 ± 0.00 | 0.25 ± 0.01 | 0.25 ± 0.00 | 0.31 ± 0.00 | 0.10 ± 0.00 | 0.11 ± 0.00 | 0.13 ± 0.00 | 0.16 ± 0.00 |
MOSB | 0.24 ± 0.00 | 0.24 ± 0.00 | 0.26 ± 0.00 | 0.32 ± 0.00 | 0.10 ± 0.00 | 0.11 ± 0.00 | 0.12 ± 0.00 | 0.14 ± 0.00 |
MOR | 0.24 ± 0.00 | 0.24 ± 0.00 | 0.25 ± 0.00 | 0.35 ± 0.01 | 0.10 ± 0.00 | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.16 ± 0.00 |
MOG | 0.24 ± 0.00 | 0.24 ± 0.00 | 0.23 ± 0.00 | 0.28 ± 0.00 | 0.10 ± 0.00 | 0.15 ± 0.00 | 0.15 ± 0.00 | 0.17 ± 0.00 |
MOL | 0.24 ± 0.00 | 0.24 ± 0.00 | 0.24 ± 0.00 | 0.28 ± 0.00 | 0.10 ± 0.00 | 0.14 ± 0.00 | 0.14 ± 0.00 | 0.17 ± 0.00 |
Peroxide value (mEq O2/kg) | ||||||||
MO | 4.00 ± 0.00 | 6.40 ± 0.00 | 7.10 ± 0.01 | 10.70 ± 0.00 | 6.00 ± 0.00 | 6.20 ± 0.00 | 11.00 ± 0.00 | 19.00 ± 0.00 |
MOSB | 4.00 ± 0.01 | 5.50 ± 0.00 | 5.90 ± 0.00 | 9.80 ± 0.00 | 6.00 ± 0.00 | 6.50 ± 0.01 | 13.00 ± 0.00 | 20.00 ± 0.00 |
MOR | 4.00 ± 0.01 | 6.60 ± 0.01 | 6.80 ± 0.00 | 9.50 ± 0.00 | 6.00 ± 0.01 | 5.80 ± 0.00 | 9.00 ± 0.01 | 35.00 ± 0.01 |
MOG | 4.00 ± 0.00 | 6.60 ± 0.01 | 6.90 ± 0.00 | 15.20 ± 0.01 | 6.00 ± 0.01 | 7.50 ± 0.01 | 9.00 ± 0.00 | 22.00 ± 0.00 |
MOL | 4.00 ± 0.00 | 7.90 ± 0.00 | 8.40 ± 0.00 | 17.30 ± 0.00 | 6.00 ± 0.00 | 7.70 ± 0.00 | 10.00 ± 0.00 | 25.00 ± 0.00 |
K232 | ||||||||
MO | 1.49 ± 0.01 | 1.51 ± 0.03 | 1.62 ± 0.01 | 1.78 ± 0.02 | 1.70 ± 0.01 | 1.81 ± 0.02 | 1.87 ± 0.03 | 2.00 ± 0.12 |
MOSB | 1.49 ± 0.01 | 1.60 ± 0.02 | 1.64 ± 0.04 | 2.02 ± 0.05 | 1.70 ± 0.01 | 1.80 ± 0.02 | 1.85 ± 0.01 | 2.26 ± 0.03 |
MOR | 1.49 ± 0.03 | 1.59 ± 0.01 | 1.61 ± 0.03 | 1.91 ± 0.02 | 1.70 ± 0.05 | 1.79 ± 0.03 | 1.81 ± 0.01 | 2.20 ± 0.01 |
MOG | 1.49 ± 0.02 | 1.61 ± 0.02 | 1.62 ± 0.01 | 1.96 ± 0.01 | 1.70 ± 0.02 | 1.82 ± 0.01 | 1.84 ± 0.05 | 2.27 ± 0.06 |
MOL | 1.49 ± 0.03 | 1.60 ± 0.02 | 1.69 ± 0.04 | 2.03 ± 0.03 | 1.70 ± 0.01 | 1.81 ± 0.04 | 1.88 ± 0.06 | 2.31 ± 0.02 |
K270 | ||||||||
MO | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.19 ± 0.00 | 0.13 ± 0.00 | 0.15 ± 0.00 | 0.15 ± 0.00 | 0.20 ± 0.00 |
MOSB | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.20 ± 0.00 | 0.13 ± 0.00 | 0.16 ± 0.00 | 0.16 ± 0.00 | 0.24 ± 0.00 |
MOR | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.20 ± 0.00 | 0.13 ± 0.00 | 0.14 ± 0.00 | 0.14 ± 0.00 | 0.21 ± 0.00 |
MOG | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.18 ± 0.00 | 0.13 ± 0.00 | 0.15 ± 0.00 | 0.15 ± 0.00 | 0.19 ± 0.00 |
MOL | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.13 ± 0.00 | 0.18 ± 0.00 | 0.13 ± 0.00 | 0.15 ± 0.00 | 0.15 ± 0.00 | 0.19 ± 0.00 |
ΔK | ||||||||
MO | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 |
MOSB | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 |
MOR | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 |
MOG | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
MOL | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 |
Samples | February 2016 | July 2016 | December 2016 | February 2017 | July 2017 | December 2017 |
---|---|---|---|---|---|---|
MO | 7.5 | 7.4 | 6.7 | 7.0 | 6.7 | 6.6 |
Samples | Description | 2015–2016 | 2016–2017 | ||
---|---|---|---|---|---|
July | December | July | December | ||
MOSB | Aroma (garlic) | VN | VN | VN | VN |
Taste (garlic) | VN | VN | VN | VN | |
Bitter and pungent | 3-5 | 3-4 | 3-3 | 2-3 | |
Flavour intensity | 5 | 3 | 5 | 4 | |
MOR | Aroma (rosemary) | VN | VN | VN | VN |
Taste (rosemary) | N | N | N | N | |
Bitter and pungent | 2-3 | 2-2 | 2-3 | 2-1 | |
Flavour intensity | 4 | 4 | 4 | 4 | |
MOG | Aroma (garlic) | VN | VN | VN | VN |
Taste (garlic) | VN | VN | VN | VN | |
Bitter and pungent | 3-4 | 2-3 | 3-3 | 2-3 | |
Flavour intensity | 4 | 4 | 5 | 4 | |
MOL | Aroma (lemon) | N | N | N | N |
Taste (lemon) | N | N | N | N | |
Bitter and pungent | 3-2 | 2-2 | 2-2 | 2-2 | |
Flavour intensity | 4 | 3 | 4 | 2 |
Samples | February 2016 | December 2016 | February 2017 | December 2017 | |
---|---|---|---|---|---|
MO | C16:0 | 11.70± 0.12 | 11.3 ± 0.10 | 10.80 ± 0.09 | 10.0 ± 0.05 |
C16:1 | 0.50± 0.01 | 0.50 ± 0.01 | 0.40 ± 0.02 | 0.40 ± 0.01 | |
C18:0 | 2.20 ± 0.03 | 2.20 ± 0.02 | 2.70 ± 0.01 | 2.50 ± 0.03 | |
C18:1 | 71.20 ± 0.02 | 70.60 ± 0.02 | 71.10 ± 0.03 | 73.40 ± 0.08 | |
C18:2 | 12.30 ± 0.03 | 11.90 ± 0.04 | 12.10 ± 0.02 | 11.70 ± 0.03 | |
C18:3 | 1.10 ± 0.02 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | |
MOSB | C16:0 | 11.70 ± 0.03 | 11.20 ± 0.02 | 10.8 ± 0.01 | 10.0 ± 0.01 |
C16:1 | 0.50 ± 0.01 | 0.50 ± 0.06 | 0.40 ± 0.03 | 0.50 ± 0.01 | |
C18:0 | 2.20 ± 0.02 | 2.20 ± 0.01 | 2.70 ± 0.02 | 2.50 ± 0.01 | |
C18:1 | 71.20 ± 0.12 | 70.70 ± 0.09 | 71.10 ± 0.01 | 73.60 ± 0.03 | |
C18:2 | 12.30 ± 0.03 | 11.90 ± 0.02 | 12.10 ± 0.02 | 11.80 ± 0.02 | |
C18:3 | 1.10 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.02 | 1.10 ± 0.03 | |
MOR | C16:0 | 11.70 ± 0.01 | 11.50 ± 0.02 | 10.80 ± 0.10 | 10.10 ± 0.03 |
C16:1 | 0.50 ± 0.01 | 0.50 ± 0.01 | 0.40 ± 0.02 | 0.50 ± 0.01 | |
C18:0 | 2.20 ± 0.03 | 2.20 ± 0.02 | 2.70 ± 0.01 | 2.50 ± 0.01 | |
C18:1 | 71.20 ± 0.08 | 71.30 ± 0.03 | 71.10 ± 0.02 | 73.80 ± 0.01 | |
C18:2 | 12.30 ± 0.03 | 11.7 ± 0.01 | 12.10 ± 0.02 | 11.60 ± 0.03 | |
C18:3 | 1.10 ± 0.01 | 1.00 ± 0.02 | 1.00 ± 0.03 | 1.00 ± 0.02 | |
MOG | C16:0 | 11.70 ± 0.01 | 11.30 ± 0.03 | 10.80 ± 0.05 | 10.10 ± 0.01 |
C16:1 | 0.50 ± 0.02 | 0.50 ± 0.05 | 0.40 ± 0.02 | 0.50 ± 0.01 | |
C18:0 | 2.20 ± 0.02 | 2.20 ± 0.04 | 2.70 ± 0.07 | 2.50 ± 0.01 | |
C18:1 | 71.20 ± 0.04 | 71.10 ± 0.02 | 71.10 ± 0.01 | 73.60 ± 0.02 | |
C18:2 | 12.30 ± 0.01 | 11.90 ± 0.02 | 12.10 ± 0.04 | 11.70 ± 0.03 | |
C18:3 | 1.10 ± 0.02 | 1.00 ± 0.03 | 1.00 ± 0.01 | 1.10 ± 0.02 | |
MOL | C16:0 | 11.70 ± 0.02 | 11.40 ± 0.02 | 10.80 ± 0.01 | 10.10 ± 0.05 |
C16:1 | 0.50 ± 0.01 | 0.50 ± 0.01 | 0.40 ± 0.02 | 0.50 ± 0.02 | |
C18:0 | 2.20 ± 0.03 | 2.20 ± 0.05 | 2.70 ± 0.04 | 2.50 ± 0.01 | |
C18:1 | 71.20 ± 0.02 | 70.70 ± 0.02 | 71.10 ± 0.05 | 73.70 ± 0.04 | |
C18:2 | 12.30 ± 0.01 | 11.80 ± 0.01 | 12.10 ± 0.02 | 11.80 ± 0.02 | |
C18:3 | 1.10 ± 0.04 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.10 ± 0.01 |
Samples | February 2016 | December 2016 | February 2017 | December 2017 | |
---|---|---|---|---|---|
MO | C14:0 | <0.03 | <0.03 | <0.03 | <0.03 |
C18:3 | 1.10 ± 0.01 | 1.10 ± 0.02 | 1.10 ± 0.01 | 1.10 ± 0.01 | |
C20:0 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.40 ± 0.00 | 0.30 ± 0.00 | |
C20:1 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.00 | |
C22:0 | <0.10 | <0.10 | 0.10 ± 0.00 | 0.10 ± 0.01 | |
C24:0 | <0.1 | <0.10 | 0.10 ± 0.00 | <0.10 | |
C18:1 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
C18:3 trans + C18:2 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
MOSB | C14:0 | <0.03 | <0.03 | <0.03 | <0.03 |
C18:3 | 1.10 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.02 | 1.1 ± 0.03 | |
C20:0 | 0.30 ± 0.00 | 0.40 ± 0.00 | 0.40 ± 0.00 | 0.40 ± 0.00 | |
C20:1 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.00 | |
C22:0 | <0.10 | <0.10 | 0.10 ± 0.00 | 0.10 ± 0.00 | |
C24:0 | <0.10 | <0.10 | 0.10 ± 0.00 | <0.10 | |
C18:1 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
C18:3 trans + C18:2 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
MOR | C14:0 | <0.03 | <0.03 | <0.03 | <0.03 |
C18:3 | 1.10 ± 0.02 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.10 ± 0.01 | |
C20:0 | 0.30 ± 0.01 | 0.30 ± 0.00 | 0.40 ± 0.00 | 0.40 ± 0.01 | |
C20:1 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.01 | 0.30 ± 0.00 | |
C22:0 | <0.10 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | |
C24:0 | <0.10 | <0.10 | 0.10 ± 0.00 | <0.10 | |
C18:1 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
C18:3 trans + C18:2 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
MOG | C14:0 | <0.03 | <0.03 | <0.03 | <0.03 |
C18:3 | 1.10 ± 0.02 | 1.00 ± 0.03 | 1.00 ± 0.12 | 1.10 ± 0.10 | |
C20:0 | 0.30 ± 0.01 | 0.40 ± 0.01 | 0.40 ± 0.01 | 0.40 ± 0.01 | |
C20:1 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.01 | |
C22:0 | <0.10 | 0.10 ± 0.01 | 0.10 ± 0.00 | 0.10 ± 0.01 | |
C24:0 | <0.10 | <0.10 | 0.1 ± 0.010 | <0.10 | |
C18:1 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
C18:3 trans + C18:2 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
MOL | C14:0 | <0.03 | <0.03 | <0.03 | <0.03 |
C18:3 | 1.10 ± 0.04 | 1.00 ± 0.02 | 1.00 ± 0.01 | 1.10 ± 0.03 | |
C20:0 | 0.30 ± 0.00 | 0.40 ± 0.00 | 0.40 ± 0.00 | 0.40 ± 0.00 | |
C20:1 | 0.30 ± 0.01 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.20 ± 0.00 | |
C22:0 | <0.10 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | |
C24:0 | <0.10 | <0.10 | 0.10 ± 0.00 | <0.10 | |
C18:1 trans | <0.02 | <0.02 | <0.02 | <0.02 | |
C18:3 trans + C18:2 trans | <0.02 | <0.02 | <0.02 | <0.02 |
Samples | February 2016 | December 2016 | February 2017 | December 2017 |
---|---|---|---|---|
MO | 45.00 ± 0.20 | 49.00 ± 0.21 | 34.00 ± 0.11 | 37.00 ± 0.12 |
MOSB | 45.00 ± 0.12 | 40.00 ± 0.15 | 34.00 ± 0.20 | 31.00 ± 0.14 |
MOR | 45.00 ± 0.13 | 42.00 ± 0.13 | 34.00 ± 0.12 | 34.00 ± 0.23 |
MOG | 45.00 ± 0.10 | 40.00 ± 0.14 | 34.00 ± 0.10 | 32.00 ± 0.11 |
MOL | 45.00 ± 0.12 | 41.00 ± 0.21 | 34.00 ± 0.22 | 32.00 ± 0.12 |
February 2016 | December 2016 | February 2017 | December 2017 | ||
---|---|---|---|---|---|
MO | Cholesterol | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.00 ± 0.00 |
Brassicasterol | <0.10 | <0.10 | <0.10 | 0.10 ± 0.01 | |
Campesterol | 2.20 ± 0.02 | 2.30 ± 0.01 | 2.20 ± 0.01 | 2.40 ± 0.01 | |
Estigmasterol | 0.50 ± 0.01 | 0.50 ± 0.02 | 0.50 ± 0.01 | 0.40 ± 0.00 | |
Clerosterol | 1.00 ± 0.01 | 1.00 ± 0.02 | 1.00 ± 0.03 | 0.90 ± 0.01 | |
β-sitosterol | 84.30 ± 0.20 | 83.40 ± 0.18 | 86.30 ± 0.15 | 84.50 ± 0.21 | |
5∆-avenasterol | 10.40 ± 0.20 | 10.60 ± 0.10 | 9.80 ± 0.01 | 10.30 ± 0.11 | |
5,24∆-estigmastadienol | 0.40 ± 0.00 | 0.60 ± 0.00 | <0.10 | 0.20 ± 0.00 | |
7∆-avenasterol | 0.10 ± 0.01 | 0.20 ± 0.01 | 0.10 ± 0.01 | 0.50 ± 0.01 | |
MOSB | Cholesterol | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 |
Brassicasterol | <0.10 | <0.10 | <0.10 | <0.10 | |
Campesterol | 2.20 ± 0.02 | 2.30 ± 0.03 | 2.20 ± 0.01 | 2.30 ± 0.02 | |
Estigmasterol | 0.50 ± 0.01 | 0.40 ± 0.01 | 0.50 ± 0.01 | 0.40 ± 0.01 | |
Clerosterol | 1.00 ± 0.01 | 0.90 ± 0.01 | 1.00 ± 0.01 | 0.90 ± 0.02 | |
β-sitosterol | 84.30 ± 0.10 | 83.60 ± 0.17 | 86.30 ± 0.32 | 84.60 ± 0.22 | |
5∆-avenasterol | 10.40 ± 0.15 | 10.60 ± 0.21 | 9.80 ± 0.17 | 10.30 ± 0.10 | |
5,24∆-estigmastadienol | 0.40 ± 0.01 | 0.60 ± 0.00 | <0.10 | 0.80 ± 0.00 | |
7∆-avenasterol | 0.10 ± 0.00 | 0.20 ± 0.00 | 0.10 ± 0.00 | 0.50 ± 0.00 | |
MOR | Cholesterol | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 |
Brassicasterol | <0.10 | <0.10 | <0.10 | <0.10 | |
Campesterol | 2.20 ± 0.02 | 2.20 ± 0.02 | 2.20 ± 0.02 | 2.50 ± 0.02 | |
Stigmasterol | 0.50 ± 0.00 | 0.40 ± 0.00 | 0.50 ± 0.00 | 0.40 ± 0.00 | |
Clerosterol | 1.00 ± 0.01 | 1.00 ± 0.03 | 1.00 ± 0.01 | 0.90 ± 0.01 | |
β-sitosterol | 84.30 ± 0.11 | 83.10 ± 0.13 | 86.30 ± 0.12 | 83.60 ± 0.14 | |
5∆-avenasterol | 10.40 ± 0.12 | 11.00 ± 0.06 | 9.80 ± 0.03 | 10.90 ± 0.12 | |
5,24∆-stigmastadienol | 0.40 ± 0.01 | 0.60 ± 0.010 | <0.10 | 0.70 ± 0.02 | |
7∆-avenasterol | 0.10 ± 0.00 | 0.20 ± 0.00 | 0.10 ± 0.00 | 0.40 ± 0.00 | |
MOG | Cholesterol | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 |
Brassicasterol | <0.10 | <0.10 | <0.10 | <0.10 | |
Campesterol | 2.20 ± 0.01 | 2.30 ± 0.02 | 2.20 ± 0.04 | 2.50 ± 0.02 | |
Stigmasterol | 0.50 ± 0.00 | 0.30 ± 0.00 | 0.50 ± 0.01 | 0.40 ± 0.00 | |
Clerosterol | 1.00 ± 0.02 | 0.80 ± 0.04 | 1.00 ± 0.01 | 0.80 ± 0.04 | |
β-sitosterol | 84.30 ± 0.10 | 83.80 ± 0.20 | 86.30 ± 0.06 | 84.00 ± 0.11 | |
5∆-avenasterol | 10.40 ± 0.12 | 10.60 ± 0.07 | 9.80 ± 0.02 | 10.70 ± 0.08 | |
5,24∆-stigmastadienol | 0.40 ± 0.01 | 0.50 ± 0.01 | <0.10 | 0.60 ± 0.01 | |
7∆-avenasterol | 0.10 ± 0.00 | 0.30 ± 0.00 | 0.10 ± 0.00 | 0.40 ± 0.00 | |
MOL | Cholesterol | 0.10 ± 0.00 | 0.1 ± 0.001 | 0.10 ± 0.00 | 0.1 ± 0.001 |
Brassicasterol | <0.10 | <0.10 | <0.10 | <0.10 | |
Campesterol | 2.20 ± 0.02 | 2.10 ± 0.01 | 2.20 ± 0.01 | 2.30 ± 0.01 | |
Stigmasterol | 0.50 ± 0.00 | 0.50 ± 0.00 | 0.50 ± 0.00 | 0.40 ± 0.00 | |
Clerosterol | 1.00 ± 0.01 | 0.90 ± 0.02 | 1.00 ± 0.02 | 0.90 ± 0.01 | |
β-sitosterol | 84.30 ± 0.12 | 83.60 ± 0.11 | 86.30 ± 0.13 | 84.50 ± 0.12 | |
5∆-avenasterol | 10.4±00.02 | 10.70 ± 0.03 | 9.80 ± 0.02 | 10.40 ± 0.01 | |
5,24∆-stigmastadienol | 0.40 ± 0.00 | 0.50 ± 0.00 | <0.10 | 0.80 ± 0.00 | |
7∆-avenasterol | 0.10 ± 0.00 | 0.30 ± 0.00 | 0.10 ± 0.00 | 0.50 ± 0.00 |
Samples | February 2016 | December 2016 | February 2017 | December 2017 |
---|---|---|---|---|
MO | 1915 ± 23 | 1978 ± 15 | 1933 ± 11 | 1956 ± 05 |
MOSB | 1915 ± 11 | 1896 ± 10 | 1933 ± 25 | 1916 ± 19 |
MOR | 1915 ± 11 | 1954 ± 25 | 1933 ± 17 | 1966 ± 21 |
MOG | 1915 ± 01 | 1922 ± 05 | 1933 ± 15 | 1947 ± 13 |
MOL | 1915 ± 03 | 1893 ± 12 | 1933 ± 10 | 1916 ± 05 |
Erythrodiol and Uvaol (%) | ||||
Samples | February 2016 | December 2016 | February 2017 | December 2017 |
MO | 1.20 ± 0.01 | 0.90 ± 0.01 | 1.50 ± 0.01 | 0.80 ± 0.01 |
MOSB | 1.20 ± 0.01 | 0.90 ± 0.02 | 1.50 ± 0.01 | 1.00 ± 0.02 |
MOR | 1.20 ± 0.03 | 1.10 ± 0.04 | 1.50 ± 0.05 | 1.10 ± 0.03 |
MOG | 1.20 ± 0.02 | 1.20 ± 0.01 | 1.50 ± 0.02 | 1.10 ± 0.01 |
MOL | 1.20 ± 0.01 | 1.00 ± 0.03 | 1.50 ± 0.01 | 1.00 ± 0.04 |
Total Phenolic Compounds (mg/kg oil) | ||||
February 2016 | December 2016 | February2017 | December 2017 | |
MO | 222.00 ± 1.01 | 206.00 ± 1.10 | 249.00 ± 1.80 | 234.00 ± 1.23 |
MOSB | 222.00 ± 1.02 | 237.00 ± 2.33 | 249.00 ± 2.04 | 269.00 ± 1.60 |
MOR | 222.00 ± 1.12 | 241.00 ± 1.21 | 249.00 ± 1.22 | 200.00 ± 2.02 |
MOG | 222.00 ± 1.23 | 233.00 ± 2.30 | 249.00 ± 2.23 | 256.00 ± 1.23 |
MOL | 222.00 ± 1.22 | 208.00 ± 1.20 | 249.00 ± 1.23 | 236.00 ± 1.27 |
Samples | February 2016 | December 2016 | February 2017 | December 2017 | |
---|---|---|---|---|---|
MO | Total | 313.00 ± 2.30 | 355.40 ± 2.80 | 203.00 ± 1.70 | 299.20 ± 1.90 |
α- tocopherol | 307.00 ± 1.30 | 348.20 ± 2.30 | 203.00 ± 2.20 | 291.20 ± 1.30 | |
β- tocopherol | 3.00 ± 0.03 | 2.30 ± 0.01 | <1.00 | 2.60 ± 0.02 | |
γ- tocopherol | 3.00 ± 0.02 | 4.90 ± 0.04 | <0.10 | 5.40 ± 0.04 | |
MOSB | Total | 313.00 ± 3.10 | 344.10 ± 2.40 | 203.00 ± 1.30 | 273.80 ± 1.90 |
α- tocopherol | 307.00 ± 1.30 | 338.20 ± 1.30 | 203.00 ± 1.30 | 266.10 ± 1.30 | |
β- tocopherol | 3.00 ± 0.02 | 1.90 ± 0.01 | <1.00 | 2.50 ± 0.01 | |
γ- tocopherol | 3.00 ± 0.04 | 3.90 ± 0.06 | <1.00 | 5.20 ± 0.02 | |
MOR | Total | 313.00 ± 1.70 | 366.20 ± 2.30 | 203.00 ± 1.80 | 288.0 ± 1.70 |
α- tocopherol | 307.00 ± 0.30 | 359.30 ± 1.60 | 203.00 ± 2.30 | 280.10 ± 0.30 | |
β- tocopherol | 3.00 ± 0.08 | 2.20 ± 0.23 | <1.00 | 2.60 ± 0.02 | |
γ- tocopherol | 3.00 ± 0.14 | 4.60 ± 0.03 | <1.00 | 5.30 ± 0.01 | |
MOG | Total | 313.00 ± 1.20 | 376.50 ± 2.30 | 203.00 ± 1.90 | 317.60 ± 1.30 |
α- tocopherol | 307.00 ± 1.50 | 369.30 ± 3.30 | 203.00 ± 2.30 | 309.30 ± 1.00 | |
β- tocopherol | 3.00 ± 0.03 | 2.40 ± 0.06 | <1.00 | 2.70 ± 0.02 | |
γ- tocopherol | 3.00 ± 0.09 | 4.70 ± 0.05 | <1.00 | 5.60 ± 0.03 | |
MOL | Total | 313.00 ± 1.30 | 361.60 ± 1.30 | 203.00 ± 1.30 | 304.60 ± 1.30 |
α- tocopherol | 307.00 ± 1.90 | 354.40 ± 0.70 | 203.00 ± 1.50 | 296.70 ± 2.10 | |
β- tocopherol | 3.00 ± 0.02 | 2.40 ± 0.02 | <1.00 | 2.60 ± 0.02 | |
γ- tocopherol | 3.00 ± 0.01 | 4.80 ± 0.03 | <1.00 | 5.30 ± 0.04 |
Samples | February 2016 | December 2016 | February 2017 | December 2017 |
---|---|---|---|---|
MO | 8.8 ± 0.1 | 6.0 ± 0.1 | 8.9 ± 0.1 | 6.0 ± 0.2 |
MOSB | 8.8 ± 0.1 | 7.0 ± 0.2 | 8.9 ± 0.4 | 6.5 ± 0.4 |
MOR | 8.8 ± 0.2 | 4.3 ± 0.1 | 8.9 ± 0.3 | 4.4 ± 0.1 |
MOG | 8.8 ± 0.3 | 6.0 ± 0.5 | 8.9 ± 0.1 | 5.9 ± 0.2 |
MOL | 8.8 ± 0.1 | 5.7 ± 0.1 | 8.9 ± 0.1 | 5.6 ± 0.1 |
Samples | ||||
---|---|---|---|---|
MO | February 2015 | December 2015 | February 2017 | December 2017 |
Microorganisms | <1 | <1 | <1 | <1 |
Coliform bacteria | <1 | <1 | <1 | <1 |
coagulase + Staphylococci | <1 | <1 | 1 | <1 |
MOSB | February 2015 | December 2015 | February 2017 | December 2017 |
Microorganisms | <1 | <1 | <1 | <1 |
Coliform bacteria | <1 | <1 | <1 | <1 |
coagulase + Staphylococci | <1 | <1 | <1 | <1 |
MOR | February 2015 | December 2015 | February 2017 | December 2017 |
Microorganisms | <1 | <1 | <1 | <1 |
Coliform bacteria | <1 | <1 | <1 | <1 |
coagulase + Staphylococci | <1 | <1 | <1 | <1 |
MOG | February 2015 | December 2015 | February 2017 | December 2017 |
Microorganisms | <1 | <1 | <1 | <1 |
Coliform bacteria | <1 | <1 | <1 | <1 |
coagulase + Staphylococci | <1 | <1 | <1 | <1 |
MOL | February 2015 | December 2015 | February 2017 | December 2017 |
Microorganisms | <1 | <1 | <1 | <1 |
Coliform bacteria | <1 | <1 | <1 | <1 |
Coagulase + Staphylococci | <1 | <1 | <1 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chéu-Guedes, M.H.; La Rubia, M.D.; Sánchez, S.; Ramos, N.; Pacheco, R. Characterization of Flavoured Olive Oils of ‘Madural’ Variety. Processes 2023, 11, 205. https://doi.org/10.3390/pr11010205
Chéu-Guedes MH, La Rubia MD, Sánchez S, Ramos N, Pacheco R. Characterization of Flavoured Olive Oils of ‘Madural’ Variety. Processes. 2023; 11(1):205. https://doi.org/10.3390/pr11010205
Chicago/Turabian StyleChéu-Guedes, María Helena, M. Dolores La Rubia, Sebastián Sánchez, Natividad Ramos, and Rafael Pacheco. 2023. "Characterization of Flavoured Olive Oils of ‘Madural’ Variety" Processes 11, no. 1: 205. https://doi.org/10.3390/pr11010205
APA StyleChéu-Guedes, M. H., La Rubia, M. D., Sánchez, S., Ramos, N., & Pacheco, R. (2023). Characterization of Flavoured Olive Oils of ‘Madural’ Variety. Processes, 11(1), 205. https://doi.org/10.3390/pr11010205