The One-Way Analysis of Variance of Heat-Storage Materials Used in Building of Poultry Houses
Abstract
1. Introduction
2. Background
3. Cyclic Thermal Analysis (CTA) Method
4. Cyclic Thermal Analysis Setting
4.1. The Measuring System
4.2. Thermocouples
5. Materials and Methods
- Melting temperature greater than 300 K and lower than 331 K;
- Coefficient λ of thermal conductivity (W/m·K) between 0.50 and 0.65;
- Overheating of the melt below the melting temperature;
- Easily available;
- Material cost < EUR 5 per kilogram;
- Hazard class between 3 and 4 (ecological safety).
6. Results
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saravanan, M.R.; Pasupathy, A. Incorporation of phase change material (PCM) in poultry Hatchery for thermal management & energy conversion schemes of slaughterhouse waste in Broiler farms for energy conservation-A case study. In Proceedings of the 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Piscataway, NJ, USA, 7–8 April 2016; pp. 291–299. [Google Scholar] [CrossRef]
- Costantino, A.; Fabrizio, E.; Ghiggini, A.; Bariani, M. Climate control in broiler houses: A thermal model for the calculation of the energy use and indoor environmental conditions. Energy Build. 2018, 169, 110–126. [Google Scholar] [CrossRef]
- De Gracia, A.; Cabeza, L.F. Phase change materials and thermal energy storage for buildings. Energy Build. 2015, 103, 414–419. [Google Scholar] [CrossRef]
- Muzhanje, A.T.; Hassan, M.A.; Ookawara, S.; Hassan, H. An overview of the preparation and characteristics of phase change materials with nanomaterials. J. Energy Storage 2022, 51, 104353. [Google Scholar] [CrossRef]
- Silva, T.; Vicente, R.; Soares, N.; Ferreira, V. Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution. Energy Build. 2012, 49, 235–245. [Google Scholar] [CrossRef]
- Vikas; Yadav, A.S.; Yadav, M.K.; Samir, S. Phase change materials for comfort management of poultry farms–A review. Mater. Today Proc. 2022, 56, 2568–2575. [Google Scholar] [CrossRef]
- Haggag, M.; Hassan., A.; Abdelbaqi, S. Phase change material to reduce cooling load of buildings in hot climate. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Swtizerland, 2019; pp. 416–423. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Liu, A.; Yue, X.; Li, T. Effect of North Wall Materials on the Thermal Environment in Chinese Solar Greenhouse (Part A: Experimental Researches). Open Phys. 2019, 17, 752–767. [Google Scholar] [CrossRef]
- Ding, Y. Transport Phenomena in Thermal Energy Storage. In Thermal Energy Storage: Materials, Devices, Systems and Applications; The Royal Society of Chemistry: London, UK, 2021; pp. 15–41. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Yan, Y. Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics. Energy Convers. Manag. 2020, 205, 112444. [Google Scholar] [CrossRef]
- Aleksandrov, V.D. Kinetics of Nucleation and Mass Crystallization of Supercooled Liquids and Amorphous Media, V.1.; Nord Press: Donetsk, Ukraine, 2011; 590p. [Google Scholar]
- Aleksandrov, V.D.; Sobol, O.V.; Aleksandrova, O.V.; Sobolev, A.Y.; Pokintelitsa, E.A.; Loiko, D.P.; Amerkhanova, S.K. The use of phase transition heat storage materials in construction. Bull. Donbass Natl. Acad. Civ. Eng. Archit. Mod. Build. Mater. 2016, 1, 5–13. [Google Scholar]
- Aftab, W.; Usman, A.; Shi, J.; Yuan, K.; Qin, M.; Zou, R. Phase Change Material-Integrated Latent Heat Storage Systems for Sustainable Energy Solutions. Energy Environ. Sci. 2021, 14, 4268–4291. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J.; Wang, X.; Yang, R.; Lin, K. Influence of additives on thermal conductivity of shape-stabilized phase change material. Sol. Energy Mater. Sol. Cells 2006, 90, 1692–1702. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Krupa, I.; Miková, G.; Luyt, A.S. Phase change materials based on low-density polyethylene/paraffin wax blends. Eur. Polym. J. 2007, 43, 4695–4705. [Google Scholar] [CrossRef]
- Stojiljkovic, M.; Blagojevic, B.; Vuckovic, G.; Ignjatovic, M.; Mitrovic, D. Optimization of operation of energy supply systems with co-generation and absorption refrigeration. Therm. Sci. 2012, 16, 409–422. [Google Scholar] [CrossRef]
- Xuanang, L.; Yujun, L.; Qiufan, Y.; Jianyu, Z.; Xia, C.; Jinyu, W. Research on coordinated control of renewable-energy-based Heat-Power station system. Appl. Energy 2022, 324, 119736. [Google Scholar] [CrossRef]
- Funk, S.M.; Fa, J.E.; O’Connell, D. Keeping animals in captivity. In Zoo Conservation Biology (Ecology, Biodiversity and Conservation); Cambridge University Press: Cambridge, UK, 2011; pp. 84–111. [Google Scholar] [CrossRef]
- Bustamante, E.; García-Diego, F.-J.; Calvet, S.; Estellés, F.; Beltrán, P.; Hospitaler, A.; Torres, A.G. Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm. Energies 2013, 6, 2605–2623. [Google Scholar] [CrossRef]
- Kic, P. Microclimatic conditions in the poultry houses. Agron. Res. 2016, 14, 82–90. [Google Scholar]
- Aleksandrov, V.D.; Barannikov, A.A.; Kuraksina, O.V. Device for cyclic thermal analysis in vacuum. In Proceedings of the 3rd International Symposium ‘Vacuum Technology and Equipment’ ISVTE-3, Kharkiv, Poland, 22–24 September 1999; Shulaev, V.M., Ed.; 1999; p. 174. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:32051703 (accessed on 23 December 2022).
- Grimvall, G. Thermophysical Properties of Materials; The Royal Institute of Technology: Stockholm, Sweden, 1999. [Google Scholar] [CrossRef]
- Aleksandrov, V.D.; Frolova, S.A.; Postnikov, V.A. Kinetics of Nucleation and Mass Crystallization of Supercooled Liquids and Amorphous Media, V.2.; Nord Press: Donetsk, Ukraine, 2018; 412p. [Google Scholar]
- Gikhman, I.I.; Skorokhod, A.V.; Yadrenko, M.I. Theory Probability and Mathematical Statistics; High School: Kyiv, Ukraine, 1979; 408p. [Google Scholar]
- Socaciu, L. Thermal energy storage: An overview. Appl. Math. Mech. 2012, 55, 785–793. [Google Scholar]
- Clark, R.-J.; Gholamibozanjani, G.; Woods, J.; Kaur, S.; Odukomaiya, A.; Al-Hallaj, S.; Farid, M. Experimental screening of salt hydrates for thermochemical energy storage for building heating application. J. Energy Storage 2022, 51, 104415. [Google Scholar] [CrossRef]
Eggs | Meat | |
---|---|---|
Air temperature in the poultry house | 16–18 °C | 16–32 °C |
Relative air humidity | 50–70% | 60–70% |
Formula | Name | CAS Number | |
---|---|---|---|
A | Sodium carbonate decahydrate | 6132-02-1 | |
B | Di-sodium hydrogen phosphate dodecahydrate | 10039-32-4 | |
C | Sodium sulphate decahydrate/Glauber’s salt | 7727-73-3 | |
D | Sodium thiosulfate pentahydrate | 10102-17-7 | |
E | Magnesium sulphate heptahydrate | 10034-99-8 | |
F | Calcium chloride hexahydrate | 7774-34-7 | |
G | Zinc nitrate hexahydrate | 10196-18-6 | |
H | Ferric chloride hexahydrate | 10025-77-1 | |
I | Sodium sulphite heptahydrate | 10102-15-5 | |
J | Sodium acetate trihydrate | 6131-90-4 |
Salt | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 305 | 247 | 0.53 | 12 | 0.5 | 1.93 | 2.43 | 1.44 | 1.11 | 0.34 | 0.26 | 3+ | 130 |
B | 308 | 260 | 0.52 | 15 | 2.0 | 1.55 | 3.18 | 1.52 | 1.49 | 0.03 | 0.90 | 3++ | 100 |
C | 306 | 270 | 0.50 | 13 | 10 | 1.92 | 3.26 | 1.49 | 1.45 | 0.04 | 0.23 | 4- | 140 |
D | 321 | 209 | 0.60 | 19 | 44 | 1.46 | 2.40 | 1.73 | 1.67 | 0.06 | 0.34 | 4+ | 250 |
E | 322 | 201 | 0.61 | 16 | 3.5 | 1.6 | 2.10 | 1.68 | 1.58 | 0.10 | 0.33 | 4 | 160 |
F | 302 | 170 | 0.63 | 14 | 15 | 1.45 | 2.19 | 1.62 | 1.51 | 0.11 | 4.74 | 3 | 200 |
G | 309 | 150 | 0.54 | 18 | 3.0 | 1.55 | 2.30 | 1.83 | 1.81 | 0.02 | 1.01 | 3- | 190 |
H | 310 | 200 | 0.55 | 17 | 1.5 | 1.34 | 1.93 | 1.63 | 1.60 | 0.03 | 1.39 | 4-- | 180 |
I | 301 | 179 | 0.51 | 11 | 1.0 | 1.82 | 2.79 | 1.47 | 1.46 | 0.01 | 0.57 | 3 | 150 |
J | 331 | 275 | 0.62 | 9 | 53 | 2.0 | 2.80 | 1.45 | 1.40 | 0.05 | 1.31 | 4- | 300 |
Salt | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 8 | 4 | 7 | 3 | 1 | 2 | 5 | 10 | 10 | 10 | 2 | 2 | 9 |
B | 6 | 3 | 8 | 6 | 4 | 6 | 2 | 6 | 6 | 3 | 6 | 1 | 10 |
C | 7 | 2 | 9 | 4 | 8 | 3 | 1 | 7 | 8 | 5 | 1 | 9 | 8 |
D | 3 | 5 | 4 | 10 | 9 | 8 | 6 | 2 | 2 | 7 | 4 | 6 | 2 |
E | 2 | 6 | 3 | 7 | 6 | 5 | 9 | 3 | 4 | 8 | 3 | 7 | 6 |
F | 9 | 9 | 1 | 5 | 7 | 9 | 8 | 5 | 5 | 9 | 10 | 4 | 3 |
G | 5 | 10 | 6 | 9 | 5 | 7 | 7 | 1 | 1 | 2 | 7 | 5 | 4 |
H | 4 | 7 | 5 | 8 | 3 | 10 | 10 | 4 | 3 | 4 | 9 | 10 | 5 |
I | 10 | 8 | 10 | 2 | 2 | 4 | 4 | 8 | 7 | 1 | 5 | 3 | 7 |
J | 1 | 1 | 2 | 1 | 10 | 1 | 3 | 9 | 9 | 6 | 8 | 8 | 1 |
Groups | Score | Sum | Mean | Variance |
---|---|---|---|---|
Line 1 | 13 | 73 | 5.62 | 12.26 |
Line 2 | 13 | 67 | 5.15 | 6.14 |
Line 3 | 13 | 72 | 5.54 | 9.10 |
Line 4 | 13 | 68 | 5.23 | 7.36 |
Line 5 | 13 | 69 | 5.31 | 4.73 |
Line 6 | 13 | 84 | 6.46 | 7.94 |
Line 7 | 13 | 69 | 5.31 | 7.90 |
Line 8 | 13 | 82 | 6.31 | 7.73 |
Line 9 | 13 | 71 | 5.46 | 9.44 |
Line 10 | 13 | 60 | 4.62 | 13.92 |
Source of Variance | SS | df | MS | F | p-Value | F |
---|---|---|---|---|---|---|
Between groups | 34.35 | 9 | 3.82 | 0.44 | 0.91 | 1.96 |
Within groups | 1038.15 | 120 | 8.65 | |||
Sum | 1072.50 | 129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksandrova, O.; Zhmykhova, T.; Värnik, R.; Viira, A.-H. The One-Way Analysis of Variance of Heat-Storage Materials Used in Building of Poultry Houses. Processes 2023, 11, 104. https://doi.org/10.3390/pr11010104
Aleksandrova O, Zhmykhova T, Värnik R, Viira A-H. The One-Way Analysis of Variance of Heat-Storage Materials Used in Building of Poultry Houses. Processes. 2023; 11(1):104. https://doi.org/10.3390/pr11010104
Chicago/Turabian StyleAleksandrova, Olha, Tetiana Zhmykhova, Rando Värnik, and Ants-Hannes Viira. 2023. "The One-Way Analysis of Variance of Heat-Storage Materials Used in Building of Poultry Houses" Processes 11, no. 1: 104. https://doi.org/10.3390/pr11010104
APA StyleAleksandrova, O., Zhmykhova, T., Värnik, R., & Viira, A.-H. (2023). The One-Way Analysis of Variance of Heat-Storage Materials Used in Building of Poultry Houses. Processes, 11(1), 104. https://doi.org/10.3390/pr11010104