Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Acquisition and Preparation
2.2. Biaxial Mechanical Testing
2.3. Tissue Stress–Strain Analysis
2.4. Analysis of Variance
3. Experimental Results
3.1. Stress–Strain Relationship
3.2. Cross-Directional Variation
3.3. Cross-Wall Variation
3.4. Stored Strain Energy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nemavhola, F. Mechanics of the septal wall may be affected by the presence of fibrotic infarct in the free wall at end-systole. Int. J. Med. Eng. Inform. 2019, 11, 205–225. [Google Scholar]
- Nemavhola, F. Fibrotic infarction on the LV free wall may alter the mechanics of healthy septal wall during passive filling. Bio-Med. Mater. Eng. 2017, 28, 579–599. [Google Scholar] [CrossRef] [PubMed]
- Nemavhola, F. Biaxial quantification of passive porcine myocardium elastic properties by region. Eng. Solid Mech. 2017, 5, 155–166. [Google Scholar] [CrossRef]
- Ndlovu, Z.; Nemavhola, F.; Desai, D. Biaxial mechanical characterization and constitutive modelling of sheep sclera soft tissue. Russ. J. Biomech./Ross. Zurnal Biomehaniki 2020, 24, 84–96. [Google Scholar]
- Ngwangwa, H.M.; Nemavhola, F. Evaluating computational performances of hyperelastic models on supraspinatus tendon uniaxial tensile test data. J. Comput. Appl. Mech. 2021, 52, 27–43. [Google Scholar]
- Nemavhola, F.; Ngwangwa, H.M.; Pandelani, T. An Investigation of Uniaxial Mechanical Properties of Excised Sheep Heart Muscle Fibre–Fitting of Different Hyperelastic Constitutive Models. Preprints 2021, 1, 2021080566. [Google Scholar] [CrossRef]
- Nemavhola, F.; Sigwadi, R. Prediction of hyperelastic material properties of Nafion117 and Nafion/ZrO2 nano-composite membrane. Int. J. Automot. Mech. Eng. 2019, 16, 6524–6540. [Google Scholar] [CrossRef]
- Li, D.S.; Avazmohammadi, R.; Merchant, S.S.; Kawamura, T.; Hsu, E.W.; Gorman III, J.H.; Gorman, R.C.; Sacks, M.S. Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3d kinematics. J. Mech. Behav. Biomed. Mater. 2020, 103, 103508. [Google Scholar] [CrossRef]
- Martynenko, A.; Zozulya, V.V. Mathematical modeling of the cardiac tissue. Mech. Adv. Mater. Struct. 2021, 28, 1–17. [Google Scholar]
- Childers, R.C.; Trask, A.J.; Liu, J.; Lucchesi, P.A.; Gooch, K.J. Paired pressure-volume loop analysis and biaxial mechanical testing characterize differences in left ventricular tissue stiffness of volume overload and angiotensin-induced pressure overload hearts. J. Biomech. Eng. 2021, 143, 081003. [Google Scholar] [CrossRef]
- Jorba, I.; Mostert, D.; Hermans, L.H.; van der Pol, A.; Kurniawan, N.A.; Bouten, C.V. In Vitro Methods to Model Cardiac Mechanobiology in Health and Disease. Tissue Eng. Part C Methods 2021, 27, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Li, W. Biomechanics of infarcted left Ventricle-A review of experiments. J. Mech. Behav. Biomed. Mater. 2020, 103, 103591. [Google Scholar] [CrossRef] [PubMed]
- Nemavhola, F. Pig sclera stress-strain dataset under biaxial tensile testing. Mendeley Data 2020, V1. [Google Scholar] [CrossRef]
- Masithulela, F.J. Computational Biomechanics in the Remodelling Rat Heart Post Myocardial Infarction. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2016. [Google Scholar]
- Masithulela, F. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart. Bio-Med. Mater. Eng. 2016, 27, 507–525. [Google Scholar] [CrossRef]
- Masithulela, F. The Effect of Over-Loaded Right Ventricle during Passive Filling in Rat Heart: A Biventricular Finite Element Model. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Masithulela, F. Analysis of Passive Filling with Fibrotic Myocardial Infarction. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Nemavhola, F. Detailed structural assessment of healthy interventricular septum in the presence of remodeling infarct in the free wall–A finite element model. Heliyon 2019, 5, e01841. [Google Scholar] [CrossRef]
- Nemavhola, F.; Ngwangwa, H.; Davies, N.; Franz, T. Passive Biaxial Tensile Dataset of Three Main Rat Heart Myocardia: Left Ventricle, Mid-Wall and Right Ventricle. Preprints 2021, 1, 2021080153. [Google Scholar]
- Rigolin, V.H.; Robiolio, P.A.; Wilson, J.S.; Harrison, J.K.; Bashore, T.M. The forgotten chamber: The importance of the right ventricle. Catheter. Cardiovasc. Diagn. 1995, 35, 18–28. [Google Scholar] [CrossRef]
- Sheehan, F.; Redington, A. The right ventricle: Anatomy, physiology and clinical imaging. Heart 2008, 94, 1510–1515. [Google Scholar] [CrossRef]
- Mas, P.T.; Rodríguez-Palomares, J.F.; Antunes, M.J. Secondary tricuspid valve regurgitation: A forgotten entity. Heart 2015, 101, 1840–1848. [Google Scholar]
- Kakaletsis, S.; Meador, W.D.; Mathur, M.; Sugerman, G.P.; Jazwiec, T.; Malinowski, M.; Lejeune, E.; Timek, T.A.; Rausch, M.K. Right ventricular myocardial mechanics: Multi-modal deformation, microstructure, modeling, and comparison to the left ventricle. Acta Biomater. 2021, 123, 154–166. [Google Scholar] [CrossRef]
- Valdez-Jasso, D.; Simon, M.A.; Champion, H.C.; Sacks, M.S. A murine experimental model for the mechanical behaviour of viable right-ventricular myocardium. J. Physiol. 2012, 590, 4571–4584. [Google Scholar] [CrossRef] [PubMed]
- Sacks, M.S.; Chuong, C.J. A constitutive relation for passive right-ventricular free wall myocardium. J. Biomech. 1993, 26, 1341–1345. [Google Scholar] [CrossRef]
- Golob, M.; Moss, R.; Chelser, N. Cardiac Tissue Structure, Properties, and Performance: A Materials Science Perspective. Ann. Biomed. Eng. 2014, 42, 2003–2013. [Google Scholar] [CrossRef][Green Version]
- Laurence, D.; Ross, C.; Jett, S.; Johns, C.; Echols, A.; Baumwart, R.; Towner, R.; Liao, J.; Bajona, P.; Wu, Y. An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets. J. Biomech. 2019, 83, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.R.; Simon, M.A.; Valdez-Jasso, D.; Zhang, W.; Champion, H.C.; Sacks, M.S. Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload. Ann. Biomed. Eng. 2014, 42, 2451–2465. [Google Scholar] [CrossRef] [PubMed]
- Avazmohammadi, R.; Hill, M.R.; Simon, M.A.; Zhang, W.; Sacks, M.S. A novel constitutive model for passive right ventricular myocardium: Evidence for myofiber–collagen fiber mechanical coupling. Biomech. Model. Mechanobiol. 2017, 16, 561–581. [Google Scholar] [CrossRef]
- Nemavhola, F. Study of biaxial mechanical properties of the passive pig heart: Material characterisation and categorisation of regional differences. Int. J. Mech. Mater. Eng. 2021, 16, 6. [Google Scholar] [CrossRef]
- South African Goverment. Animal Protection Index (API) 2020. 2020. Available online: https://api.worldanimalprotection.org/sites/default/files/api_2020_-_south_africa_0.pdf (accessed on 20 August 2021).
- Gardiner, J.C.; Weiss, J.A. Simple shear testing of parallel-fibered planar soft tissues. J. Biomech. Eng. 2001, 123, 170–175. [Google Scholar] [CrossRef]
- Viiidik, A. Biomechanics of tendons and other soft connective tissues. Testing methods and structure-function interdependence. In Biomechanics: Basic and Applied Research; Bergmann, G., Kolbel, R., Rohlmann, A., Eds.; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1987; pp. 59–72. [Google Scholar]
- Fung, Y.C. A First Course in Continuum Mechanics for Physical and Biological Engineers and Scientists; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers (with CD); John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Jiang, M.; Lawson, Z.T.; Erel, V.; Pervere, S.; Nan, T.; Robbins, A.B.; Feed, A.D.; Moreno, M.R. Clamping soft biologic tissues for uniaxial tensile testing: A brief survey of current methods and development of a novel clamping mechanism. J. Mech. Behav. Biomed. Mater. 2020, 103, 103503. [Google Scholar] [CrossRef]
- Sirry, M.S.; Butler, J.R.; Patnaik, S.S.; Brazile, B.; Bertucci, R.; Claude, A.; McLaughlin, R.; Davies, N.H.; Liao, J.; Franz, T. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. J. Mech. Behav. Biomed. Mater. 2016, 63, 252–264. [Google Scholar] [CrossRef]
- Martonová, D.; Alkassar, M.; Seufert, J.; Holz, D.; Dương, M.T.; Reischl, B.; Friedrich, O.; Leyendecker, S. Passive mechanical properties in healthy and infarcted rat left ventricle characterised via a mixture model. J. Mech. Behav. Biomed. Mater. 2021, 119, 104430. [Google Scholar] [CrossRef] [PubMed]
p-Values: Cross-Directional Variation in a Wall | |||
---|---|---|---|
LV | SPW | RV | |
Elastic Modulus | 0.0601 | 0.0001 | 0.1128 |
Peak stress at toe region limit | 0.0042 | 0.2791 | 0.0000 |
Peak stress at 40% strain | 0.9537 | 0.0342 | 0.0005 |
p-Values: Cross-Wall Variation in a Particular Direction | ||||||
---|---|---|---|---|---|---|
LV-SPW | LV-RV | SPW-RV | ||||
L | C | L | C | L | C | |
Elastic Modulus | 0.0000 | 0.0043 | 0.0142 | 0.0000 | 0.6552 | 0.0001 |
Peak stress at toe region limit | 0.0007 | 0.0111 | 0.8879 | 0.0001 | 0.0084 | 0.0033 |
Peak stress at 40% strain | 0.0021 | 0.2117 | 0.2119 | 0.0000 | 0.2864 | 0.0000 |
Wall of Myocardium | Toe Region (Kj) | Linear Elastic Region (Kj) | ||
---|---|---|---|---|
Longitudinal | Circumferential | Longitudinal | Circumferential | |
Left ventricle | 0.0803 | 0.2210 | 3.3130 | 3.4471 |
Septum | 0.1941 | 0.3359 | 4.5341 | 3.7879 |
Right ventricle | 0.0728 | 0.7697 | 1.3251 | 2.8569 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngwangwa, H.; Nemavhola, F.; Pandelani, T.; Msibi, M.; Mabuda, I.; Davies, N.; Franz, T. Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia. Processes 2022, 10, 629. https://doi.org/10.3390/pr10040629
Ngwangwa H, Nemavhola F, Pandelani T, Msibi M, Mabuda I, Davies N, Franz T. Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia. Processes. 2022; 10(4):629. https://doi.org/10.3390/pr10040629
Chicago/Turabian StyleNgwangwa, Harry, Fulufhelo Nemavhola, Thanyani Pandelani, Makhosasana Msibi, Israel Mabuda, Neil Davies, and Thomas Franz. 2022. "Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia" Processes 10, no. 4: 629. https://doi.org/10.3390/pr10040629
APA StyleNgwangwa, H., Nemavhola, F., Pandelani, T., Msibi, M., Mabuda, I., Davies, N., & Franz, T. (2022). Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia. Processes, 10(4), 629. https://doi.org/10.3390/pr10040629