Efficiency of Penicillium canescens in Dissipating PAH in Industrial Aged Contaminated Soil Microcosms and Its Impact on Soil Organic Matter and Ecotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Microorganism and Inoculum Preparation
2.3. Microcosm Setup
2.4. PAH Extraction and Analysis
2.5. PAH Bioavailability
2.6. Ecotoxicological Tests
2.7. Fulvic and Humic Acids Extraction
2.8. Statistical Tests
3. Results and Discussion
3.1. PAH Dissipation in Soil Microcosms: Bioaugmentation versus Biostimulation
3.2. PAH Dissipation in Soil Microcosms: Importance of the Emulsifying Solution
3.3. Multivariable Analysis Based on Four PAH Parameters: Dissipation, Initial Concentration in Soil, Water Solubility, and Log Kow
3.4. Nematode Toxicity Tests
3.5. PAH Bioavailability
3.6. Organic Matter Change
3.7. Limits and Future Research Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. IARC Monogr. Eval. Carcinog. Risks. Hum. 2010, 92, 1–853. [Google Scholar]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef] [PubMed]
- Umeh, A.; Duan, L.; Naidu, R.; Semple, K. Time-Dependent Remobilisation of Non-Extractable Benzo[a]Pyrene Residues in Contrasting Soils: Effects of Aging, Spiked Concentration, and Soil Properties. Environ. Sci. Technol. 2018, 52, 12295–12305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazarji, M.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Fedorenko, A.; Bauer, T.; Soldatov, A.; Barakhov, A.; Dudnikova, T. Biochar-Assisted Fenton-like Oxidation of Benzo[a]Pyrene-Contaminated Soil. Environ. Geochem. Health 2022, 44, 195–206. [Google Scholar] [CrossRef]
- Medaura, M.C.; Guivernau, M.; Moreno-Ventas, X.; Prenafeta-Boldú, F.X.; Viñas, M. Bioaugmentation of Native Fungi, an Efficient Strategy for the Bioremediation of an Aged Industrially Polluted Soil with Heavy Hydrocarbons. Front. Microbiol. 2021, 12, 713. [Google Scholar] [CrossRef]
- Harms, H.; Schlosser, D.; Wick, L.Y. Untapped Potential: Exploiting Fungi in Bioremediation of Hazardous Chemicals. Nat. Rev. Microbiol. 2011, 9, 177–192. [Google Scholar] [CrossRef]
- Furuno, S.; Foss, S.; Wild, E.; Jones, K.C.; Semple, K.T.; Harms, H.; Wick, L.Y. Mycelia Promote Active Transport and Spatial Dispersion of Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 2012, 46, 5463–5470. [Google Scholar] [CrossRef]
- Wick, L.Y.; Remer, R.; Würz, B.; Reichenbach, J.; Braun, S.; Schäfer, F.; Harms, H. Effect of Fungal Hyphae on the Access of Bacteria to Phenanthrene in Soil. Environ. Sci. Technol. 2007, 41, 500–505. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Sutherland, J.B. Degradation of Polycyclic Aromatic Hydrocarbons by Fungi. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2079–2110. [Google Scholar]
- Marco-Urrea, E.; García-Romera, I.; Aranda, E. Potential of Non-Ligninolytic Fungi in Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbons. New Biotechnol. 2015, 32, 620–628. [Google Scholar] [CrossRef]
- Aranda, E. Promising Approaches towards Biotransformation of Polycyclic Aromatic Hydrocarbons with Ascomycota Fungi. Curr. Opin. Biotechnol. 2016, 38, 1–8. [Google Scholar] [CrossRef]
- Zafra, G.; Absalón, Á.E.; Cuevas, M.D.C.; Cortés-Espinosa, D.V. Isolation and Selection of a Highly Tolerant Microbial Consortium with Potential for PAH Biodegradation from Heavy Crude Oil-Contaminated Soils. Water Air Soil Pollut. 2014, 225, 1826. [Google Scholar] [CrossRef]
- Covino, S.; D’Annibale, A.; Stazi, S.R.; Cajthaml, T.; Čvančarová, M.; Stella, T.; Petruccioli, M. Assessment of Degradation Potential of Aliphatic Hydrocarbons by Autochthonous Filamentous Fungi from a Historically Polluted Clay Soil. Sci. Total Environ. 2015, 505, 545–554. [Google Scholar] [CrossRef]
- Godoy, P.; Reina, R.; Calderón, A.; Wittich, R.-M.; García-Romera, I.; Aranda, E. Exploring the Potential of Fungi Isolated from PAH-Polluted Soil as a Source of Xenobiotics-Degrading Fungi. Environ. Sci. Pollut. Res. Int. 2016, 23, 20985–20996. [Google Scholar] [CrossRef]
- Yap, C.L.; Gan, S.; Ng, H.K. Application of Vegetable Oils in the Treatment of Polycyclic Aromatic Hydrocarbons-Contaminated Soils. J. Hazard. Mater. 2010, 177, 28–41. [Google Scholar] [CrossRef]
- Rathankumar, A.K.; Saikia, K.; Kumar, P.S.; Varjani, S.; Kalita, S.; Bharadwaj, N.; George, J.; Vaidyanathan, V.K. Surfactant-Aided Mycoremediation of Soil Contaminated with Polycyclic Aromatic Hydrocarbon (PAHs): Progress, Limitation, and Countermeasures. J. Chem. Technol. Biotechnol. 2021, 97, 391–408. [Google Scholar] [CrossRef]
- Fayeulle, A.; Veignie, E.; Schroll, R.; Munch, J.C.; Rafin, C. PAH Biodegradation by Telluric Saprotrophic Fungi Isolated from Aged PAH-Contaminated Soils in Mineral Medium and Historically Contaminated Soil Microcosms. J. Soils Sediments 2019, 19, 3056–3067. [Google Scholar] [CrossRef]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef] [Green Version]
- Umeh, A.C.; Duan, L.; Naidu, R.; Semple, K.T. Comparison of Single- and Sequential-Solvent Extractions of Total Extractable Benzo[a]Pyrene Fractions in Contrasting Soils. Anal. Chem. 2018, 90, 11703–11709. [Google Scholar] [CrossRef] [Green Version]
- Umeh, A.C.; Duan, L.; Naidu, R.; Semple, K.T. Extremely Small Amounts of B[a]P Residues Remobilised in Long-Term Contaminated Soils: A Strong Case for Greater Focus on Readily Available and Not Total-Extractable Fractions in Risk Assessment. J. Hazard. Mater. 2019, 368, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Schauer, F.; Borriss, R. Biocatalysis and Biotransformation. In Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine; Tkacz, J.S., Lange, L., Eds.; Springer: Boston, MA, USA, 2004; pp. 237–306. [Google Scholar] [CrossRef]
- Garon, D.; Sage, L.; Seigle-Murandi, F. Effects of Fungal Bioaugmentation and Cyclodextrin Amendment on Fluorene Degradation in Soil Slurry. Biodegradation 2004, 15, 1–8. [Google Scholar] [CrossRef]
- Hammer, E.; Schoefer, L.; Mikolasch, A.; Hundt, K.; Schauer, F. Formation of Glucoside Conjugates during Biotransformation of Dibenzofuran by Penicillium canescens SBUG-M 1139. Appl. Microbiol. Biotechnol. 2001, 57, 390–394. [Google Scholar] [CrossRef]
- Poyntner, C.; Prem, M.; Mann, O.; Blasi, B.; Sterflinger, K. Selective Screening: Isolation of Fungal Strains from Contaminated Soils in Austria. Die Bodenkult. J. Land Manag. Food Environ. 2017, 68, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Say, R.; Yilmaz, N.; Denizli, A. Removal of Heavy Metal Ions Using the Fungus Penicillium canescens. Adsorpt. Sci. Technol. 2003, 21, 643–650. [Google Scholar] [CrossRef]
- Leitão, A.L. Potential of Penicillium Species in the Bioremediation Field. Int. J. Environ. Res. Public. Health 2009, 6, 1393–1417. [Google Scholar] [CrossRef] [Green Version]
- Zehra, A.; Dubey, M.K.; Meena, M.; Aamir, M.; Patel, C.B.; Upadhyay, R.S. Chapter 14—Role of Penicillium Species in Bioremediation Processes. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Rodriguez-Couto, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 247–260. [Google Scholar] [CrossRef]
- Lladó, S.; Covino, S.; Solanas, A.M.; Viñas, M.; Petruccioli, M.; D’annibale, A. Comparative Assessment of Bioremediation Approaches to Highly Recalcitrant PAH Degradation in a Real Industrial Polluted Soil. J. Hazard. Mater. 2013, 248–249, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Bogan, B.W.; Sullivan, W.R. Physicochemical Soil Parameters Affecting Sequestration and Mycobacterial Biodegradation of Polycyclic Aromatic Hydrocarbons in Soil. Chemosphere 2003, 52, 1717–1726. [Google Scholar] [CrossRef]
- Eggen, T. Application of Fungal Substrate from Commercial Mushroom Production—Pleurotus ostreatus—for Bioremediation of Creosote Contaminated Soil. Int. Biodeterior. Biodegrad. 1999, 44, 117–126. [Google Scholar] [CrossRef]
- Potin, O.; Rafin, C.; Veignie, E. Bioremediation of an Aged Polycyclic Aromatic Hydrocarbons (PAHs)-Contaminated Soil by Filamentous Fungi Isolated from the Soil. Int. Biodeterior. Biodegrad. 2004, 54, 45–52. [Google Scholar] [CrossRef]
- Queirós, L.; Pereira, J.L.; Gonçalves, F.J.M.; Pacheco, M.; Aschner, M.; Pereira, P. Caenorhabditis elegans as a Tool for Environmental Risk Assessment—Emerging and Promising Applications for a “Nobelized Worm”. Crit. Rev. Toxicol. 2019, 49, 411–429. [Google Scholar] [CrossRef]
- Hägerbäumer, A.; Höss, S.; Heininger, P.; Traunspurger, W. Experimental Studies with Nematodes in Ecotoxicology: An Overview. J. Nematol. 2015, 47, 11–27. [Google Scholar]
- Lu, Q.; Liu, T.; Wang, N.; Dou, Z.; Wang, K.; Zuo, Y. A Review of Soil Nematodes as Biological Indicators for the Assessment of Soil Health. Front. Agric. Sci. Eng. 2020, 7, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Höss, S.; Jänsch, S.; Moser, T.; Junker, T.; Römbke, J. Assessing the Toxicity of Contaminated Soils Using the Nematode Caenorhabditis elegans as Test Organism. Ecotoxicol. Environ. Saf. 2009, 72, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Winquist, E.; Björklöf, K.; Schultz, E.; Räsänen, M.; Salonen, K.; Anasonye, F.; Cajthaml, T.; Steffen, K.T.; Jørgensen, K.S.; Tuomela, M. Bioremediation of PAH-Contaminated Soil with Fungi—From Laboratory to Field Scale. Int. Biodeterior. Biodegrad. 2014, 86, 238–247. [Google Scholar] [CrossRef]
- Hayes, M.H.; Swift, R. Vindication of Humic Substances as a Key Component of Organic Matter in Soil and Water. Adv. Agron. 2020, 163, 1–37. [Google Scholar] [CrossRef]
- Grinhut, T.; Hadar, Y.; Chen, Y. Degradation and Transformation of Humic Substances by Saprotrophic Fungi: Processes and Mechanisms. Fungal Biol. Rev. 2007, 21, 179–189. [Google Scholar] [CrossRef]
- Khatami, S.; Deng, Y.; Tien, M.; Hatcher, P.G. Lignin Contribution to Aliphatic Constituents of Humic Acids through Fungal Degradation. J. Environ. Qual. 2019, 48, 1565–1570. [Google Scholar] [CrossRef]
- Kumada, K.; Hurst, H.M. Green Humic Acid and Its Possible Origin as a Fungal Metabolite. Nature 1967, 214, 631–633. [Google Scholar] [CrossRef]
- Schnitzer, M.; Neyroud, J.A. Further Investigations on the Chemistry of Fungal “Humic Acids”. Soil Biol. Biochem. 1975, 7, 365–371. [Google Scholar] [CrossRef]
- Jia, C.; Li, X.; Zhang, L.; Francis, D.; Tai, P.; Gong, Z.; Liu, W. Extracellular Polymeric Substances from a Fungus Are More Effective than Those from a Bacterium in Polycyclic Aromatic Hydrocarbon Biodegradation. Water Air Soil Pollut. 2017, 228, 1627–1631. [Google Scholar] [CrossRef]
- Brian, P.W.; Hemming, H.G.; Moffatt, J.S.; Unwin, C.H. Canescin, an Antibiotic Produced by Penicillium Canescens. Trans. Brit. Mycol. Soc. 1953, 36, 243–247. [Google Scholar] [CrossRef]
- Nicoletti, R.; Lopez-Gresa, M.P.; Manzo, E.; Carella, A.; Ciavatta, M.L. Production and Fungitoxic Activity of Sch 642305, a Secondary Metabolite of Penicillium Canescens. Mycopathologia 2007, 163, 295–301. [Google Scholar] [CrossRef]
- Gorovtsov, A.; Demin, K.; Sushkova, S.; Minkina, T.; Grigoryeva, T.; Dudnikova, T.; Barbashev, A.; Semenkov, I.; Romanova, V.; Laikov, A.; et al. The Effect of Combined Pollution by PAHs and Heavy Metals on the Topsoil Microbial Communities of Spolic Technosols of the Lake Atamanskoe, Southern Russia. Environ. Geochem. Health 2021. online ahead of print. [Google Scholar] [CrossRef]
- Delsarte, I.; Rafin, C.; Mrad, F.; Veignie, E. Lipid Metabolism and Benzo[a]Pyrene Degradation by Fusarium Solani: An Unexplored Potential. Environ. Sci. Pollut. Res. Int. 2018, 25, 12177–12182. [Google Scholar] [CrossRef]
Treatment | Soil (g) | Inoculum | Bulking Agent (g) | Olive Oil (g) | L-α-Lecithin (g) | ES * Addition Days before Inoculation | |
---|---|---|---|---|---|---|---|
NA | Natural Attenuation | 200 | |||||
BS1 | Biostimulation | 180 | 20 | 2.34 | 0.36 | 0 | |
BS2 | Biostimulation | 160 | 40 | 4.68 | 0.72 | 0 | |
BS3 | Biostimulation | 180 | 20 | 2.34 | 0.36 | 4 | |
BS4 | Biostimulation | 160 | 40 | 4.68 | 0.72 | 4 | |
BA1 | Bioaugmentation | 180 | P. canescens | 20 | 2.34 | 0.36 | 0 |
BA2 | Bioaugmentation | 160 | P. canescens | 40 | 4.68 | 0.72 | 0 |
BA3 | Bioaugmentation | 180 | P. canescens | 20 | 2.34 | 0.36 | 4 |
BA4 | Bioaugmentation | 160 | P. canescens | 40 | 4.68 | 0.72 | 4 |
PAH | Initial PAH Concentration (mg PAH kg−1) | PAH Dissipation (%) | ||||||
---|---|---|---|---|---|---|---|---|
Treatment NA | Treatment BS4 | Treatment BA4 | ||||||
Naphtalene | NAPH | 0.95 | 19.4 | ns | 10.55 | ns | 15.22 | ns |
Acenaphtylene | ACY | 0.32 | 33.5 | s | 28.54 | s | 46.15 | s |
Acenaphtene | ACE | 0.10 | 0.0 | ns | 0.00 | ns | 12.61 | ns |
Fluorene | FLUO | 0.44 | 13.0 | ns | 49.53 | s | 50.28 | s |
Phenanthrene | PHE | 10.54 | 16.3 | s | 48.28 | s | 53.18 | s |
Anthracene | ANT | 2.36 | 13.0 | s | 48.01 | s | 53.32 | s |
Fluoranthene | FLT | 23.23 | 11.2 | s | 35.20 | s | 47.04 | s |
Pyrene | PYR | 20.23 | 7.5 | ns | 31.15 | s | 40.67 | s |
Benzo(a)anthracene | BaA | 11.08 | 10.2 | s | 15.85 | s | 28.41 | s |
Chrysene | CHRY | 8.50 | 11.6 | s | 11.18 | s | 27.45 | s |
Benzo(b)fluoranthene | BbF | 11.29 | 10.1 | ns | 7.69 | ns | 24.74 | s |
Benzo(k)fluoranthene | BkF | 5.58 | 8.2 | ns | 6.28 | ns | 18.68 | s |
Benzo(a)pyrene | BaP | 10.94 | 6.7 | ns | 19.31 | s | 30.82 | s |
Dibenzo(a,h)anthracene | DBahA | 1.07 | 0.0 | ns | 4.09 | ns | 7.99 | ns |
Benzo(g,h,i)perylene | BghiP | 8.14 | 6.3 | ns | 4.53 | ns | 18.96 | s |
Indeno(1,2,3-cd)pyrene | IcdP | 10.87 | 12.1 | s | 5.69 | ns | 20.57 | s |
Sum 16 EPA PAH | 125.63 | 10.2 | s | 22.49 | s | 34.30 | s | |
Number of PAH degraded | 7 | 9 | 13 |
PAH | Number of Aromatic Rings | Chemical Structure | Water Solubility at 25 °C mg L−1 | Log Kow |
---|---|---|---|---|
Naphtalene NAPH | 2 | | 32 | 3.3 |
Acenaphtylene ACY | 3 | | 3.93 | 4.07 |
Acenaphtene ACE | 3 | | 3.42 | 3.98 |
Fluorene FLUO | 3 | | 1.9 | 6.58 |
Phenanthrene PHE | 3 | | 1 | 4.45 |
Anthracene ANT | 3 | | 0.07 | 4.45 |
Fluoranthene FLT | 4 | | 0.27 | 4.9 |
Pyrene PYR | 4 | | 0.16 | 4.88 |
Benzo(a)anthracene BaA | 4 | | 0.0057 | 5.61 |
Chrysene CHRY | 4 | | 0.06 | 5.16 |
Benzo(b)fluoranthene BbF | 5 | | 0.001 | 6.04 |
Benzo(k)fluoranthene BkF | 5 | | 0.008 | 6.06 |
Benzo(a)pyrene BaP | 5 | | 0.0038 | 6.06 |
Dibenzo(a,h)anthracene DBahA | 5 | | 0.0005 | 6.84 |
Benzo(g,h,i)perylene BghiP | 6 | | 0.0008 | 6.58 |
Indeno(1,2,3-cd)pyrene IcdP | 6 | | Insoluble | 6.5 |
C | BA4 | |||
---|---|---|---|---|
Growth inhibition (%) | 29 | s | 16 | s |
Fertility inhibition (%) | 1 | ns | 0 | ns |
Descendant number reduction (%) | 63 | s | −9 | ns |
Treatment | Humic and Fulvic Acids mg g−1 Soil | |
---|---|---|
Mass | Carbon Content | |
C | 2.57 (±0.46) | 0.38 (±0.05) |
BA4 | 6.26 (±0.16) | 1.9 (±0.36) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veignie, E.; Rafin, C. Efficiency of Penicillium canescens in Dissipating PAH in Industrial Aged Contaminated Soil Microcosms and Its Impact on Soil Organic Matter and Ecotoxicity. Processes 2022, 10, 532. https://doi.org/10.3390/pr10030532
Veignie E, Rafin C. Efficiency of Penicillium canescens in Dissipating PAH in Industrial Aged Contaminated Soil Microcosms and Its Impact on Soil Organic Matter and Ecotoxicity. Processes. 2022; 10(3):532. https://doi.org/10.3390/pr10030532
Chicago/Turabian StyleVeignie, Etienne, and Catherine Rafin. 2022. "Efficiency of Penicillium canescens in Dissipating PAH in Industrial Aged Contaminated Soil Microcosms and Its Impact on Soil Organic Matter and Ecotoxicity" Processes 10, no. 3: 532. https://doi.org/10.3390/pr10030532
APA StyleVeignie, E., & Rafin, C. (2022). Efficiency of Penicillium canescens in Dissipating PAH in Industrial Aged Contaminated Soil Microcosms and Its Impact on Soil Organic Matter and Ecotoxicity. Processes, 10(3), 532. https://doi.org/10.3390/pr10030532