Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = mycoremediation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2088 KB  
Article
Alkaline Mycoremediation: Penicillium rubens and Aspergillus fumigatus Efficiently Decolorize and Detoxify Key Textile Dye Classes
by Magda A. El-Bendary, Shimaa R. Hamed and Sayeda Abdelrazek Abdelhamid
Sustainability 2026, 18(2), 921; https://doi.org/10.3390/su18020921 - 16 Jan 2026
Abstract
Industrial synthetic dyes are among the most common and hazardous pollutants in manufacturing wastewater. In this study, effective dye-decolorizing fungi were isolated from industrial discharge and evaluated for their decolorization efficiency for various dyes, including a triphenylmethane (malachite green, MG), an anthraquinone (reactive [...] Read more.
Industrial synthetic dyes are among the most common and hazardous pollutants in manufacturing wastewater. In this study, effective dye-decolorizing fungi were isolated from industrial discharge and evaluated for their decolorization efficiency for various dyes, including a triphenylmethane (malachite green, MG), an anthraquinone (reactive blue 19, RB19), and an azo dye (reactive black 5, RB5). The fungus with the highest potential for MG decolorization was identified as Penicillium rubens, whereas Aspergillus fumigatus proved to be the most effective for RB19 and RB5 decolorization. Maximum decolorization for all dyes occurred at pH 9 and 30 °C after 6–7 days of shaking in the dark. Enzyme activity assays revealed that both P. rubens and A. fumigatus produced multiple oxidative and reductive enzymes, including laccase, azoreductase, anthraquinone reductase, triphenylmethane reductase, lignin peroxidase, manganese peroxidase, and tyrosinase. The decolorized filtrates of MG, RB19, and RB5 exhibited very low phytotoxicity for RB5 and no phytotoxicity for MG and RB19. Furthermore, these filtrates demonstrated significant reductions in chemical oxygen demand (46%, 63%, and 50%) and biological oxygen demand (37%, 60%, and 40%) for MG, RB19, and RB5, respectively, compared to untreated dyes. Given their efficient biological removal of dyes under alkaline conditions, these fungal isolates are promising candidates for sustainable wastewater treatment. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

12 pages, 6915 KB  
Article
Bioremoval of Heavy Metals by Native Isolates of Trichoderma viride PSGSS01, Purpureocillium lilacinum PSGSS05, and Aspergillus nidulans PSGSS08
by Saritha Poothenchery, Coimbatore Subramanian Shobana, Sreeram Suresh, Malaichamy Subhashini, Ravichandran Anjali, Manokaran Jayavarthan, Rajendran Vijayakumar and Palanisamy Manikandan
Processes 2026, 14(1), 86; https://doi.org/10.3390/pr14010086 - 26 Dec 2025
Viewed by 282
Abstract
The contamination of ecosystems with heavy metals necessitates the inspection of effective, eco-friendly bioremediation strategies over expensive conventional methods. This study examined the capacity of filamentous fungi to withstand and remove heavy metals under controlled laboratory conditions. Fungal isolates were obtained from tree [...] Read more.
The contamination of ecosystems with heavy metals necessitates the inspection of effective, eco-friendly bioremediation strategies over expensive conventional methods. This study examined the capacity of filamentous fungi to withstand and remove heavy metals under controlled laboratory conditions. Fungal isolates were obtained from tree bark and soil samples collected from Coimbatore (Tamil Nadu) and Palakkad (Kerala), India. Preliminary examination revealed that Trichoderma viride PSGSS01, Purpureocillium lilacinum PSGSS05, and Aspergillus nidulans PSGSS08 are potential isolates for the bioremoval of heavy metals. Tolerance assays indicated that T. viride PSGSS01 displayed the greatest resistance, particularly to copper, with a tolerance index of 0.95. Biosorption experiments revealed notable Cu (II), Zn (II), and Co (II) removal efficiencies by T. viride, A. nidulans, and P. lilacinum, respectively. Scanning electron micrographs of metal-exposed mycelia showed pronounced structural alterations. The isolated native ascomycetes demonstrated a higher potential to remove heavy metals. These novel strains are strong candidates for mycoremediation of environments contaminated with multiple heavy metals, as they are not only sustainable but also reusable and can be subjected to the recovery of the metals. Full article
Show Figures

Figure 1

25 pages, 7569 KB  
Review
Agrobiotechnological Potential of Pleurotus ostreatus from an Ecological–Socioeconomic Perspective in Mexico
by Miguel Ángel Gómez-Jiménez, Luis Alberto Manzano-Gómez, Clara Ivette Rincón-Molina, Adriana Gen-Jiménez, Pedro Salvador-Morales, Francisco Alexander Rincón-Molina, María Susana Acosta-Navarrete, Héctor Silos-Espino, Julio Cesar Maldonado-Gómez and Reiner Rincón-Rosales
Sustainability 2026, 18(1), 6; https://doi.org/10.3390/su18010006 - 19 Dec 2025
Viewed by 572
Abstract
Pleurotus ostreatus, commonly known as the oyster mushroom, is increasingly recognized as a key agrobiotechnological resource within sustainable development frameworks due to its ecological adaptability, rich nutritional profile, and broad socioeconomic contributions. This review integrates agroecological, socioeconomic, and biotechnological dimensions to examine [...] Read more.
Pleurotus ostreatus, commonly known as the oyster mushroom, is increasingly recognized as a key agrobiotechnological resource within sustainable development frameworks due to its ecological adaptability, rich nutritional profile, and broad socioeconomic contributions. This review integrates agroecological, socioeconomic, and biotechnological dimensions to examine its taxonomic identity, resilience to diverse environmental conditions, and efficiency in organic waste bioconversion. The species plays a critical role in circular bioeconomy strategies by advancing environmental sustainability, improving food and nutrition security, and supporting rural livelihoods through accessible, low-cost cultivation practices. Additionally, P. ostreatus demonstrates significant nutraceutical and pharmacological properties, making it a promising candidate for innovative biotechnological applications. Drawing on global and local case studies, this review highlights the species’ capacity to strengthen resilient agroecological systems and inclusive approaches to public health and livelihoods. Promoting its cultivation further enhances community well-being by generating equitable economic opportunities, empowering small-scale producers, and fostering social cohesion through sustainable food networks and shared resource systems. According to Mexico’s agroecological conditions, P. ostreatus represents a potential alternative to generate socioeconomic and nutritional benefits for the population at large. Full article
Show Figures

Figure 1

24 pages, 376 KB  
Review
Exploring Novel Fungal Bioremediation Treatments to Inhibit Pollutants and Microbial Hazards Associated with Untreated Biological Soil Amendments of Animal Origin
by Alexis N. Omar, Anastasia E. M. Chirnside and Kalmia E. Kniel
Microorganisms 2025, 13(12), 2847; https://doi.org/10.3390/microorganisms13122847 - 15 Dec 2025
Viewed by 378
Abstract
Biological soil amendments of animal origin (BSAAOs) provide risk for foodborne contamination. Soils are often enriched with BSAAOs to increase nutrient value, enhance and support crop growth and yield. Little is known about the interactions of soil microorganisms and the potential impact on [...] Read more.
Biological soil amendments of animal origin (BSAAOs) provide risk for foodborne contamination. Soils are often enriched with BSAAOs to increase nutrient value, enhance and support crop growth and yield. Little is known about the interactions of soil microorganisms and the potential impact on food safety. Although BSAAOs provide benefits to soil and crops, BSAAOs are a risk for contamination. Another source of risk includes adjacent land use of concentrated animal feed operations (CAFOs) and the risk of contaminated dust with pathogens such as Escherichia coli or Salmonella is becoming more of a concern. Studies have shown that crops planted adjacent to a cattle feedlot were contaminated with pathogenic E. coli O157:H7 which originated from the cattle feedlot. Further research is needed to evaluate novel bioremediation techniques to lower/prevent the risks of windborne contamination of dust and risks posed by untreated BSAAOs. One potential novel technique is the utilization of mycofiltration. The risks of pathogenic contamination of BSAAOs could be reduced by developing a cost-effective and sustainable mycofiltration practice using naturally formulated by-products from filamentous fungi. Ligninolytic white-rot fungi can degrade a wide variety of toxic or persistent environmental contaminants and degrade pollutants in the environment. Recent studies have shown that white-rot fungi can inhibit pathogenic E. coli in bioreactor systems. Exploring white-rot fungi as a biocontrol agent for on-farm mycofiltration may prove to be a cost-effective treatment and limit certain routes of contamination to the edible portion of the crop, certainly worthy of exploration in this review. Full article
(This article belongs to the Section Environmental Microbiology)
24 pages, 5572 KB  
Article
Enhanced Biosorption of Triarylmethane Dyes by Immobilized Trametes versicolor and Pleurotus ostreatus: Optimization, Kinetics, and Reusability
by Ruchi Upadhyay, Wioletta Przystaś, Roman Turczyn and Marcelina Jureczko
Water 2025, 17(17), 2600; https://doi.org/10.3390/w17172600 - 2 Sep 2025
Cited by 1 | Viewed by 1531
Abstract
The discharge of synthetic dyes from industries poses severe environmental challenges, necessitating eco-friendly remediation strategies. This study investigated the biosorption of triarylmethane dyes Crystal Violet (CV), and Brilliant Green (BG) using self-immobilized and sponge-immobilized biosorbents of Trametes versicolor (strain CB8, CB8/S2) and Pleurotus [...] Read more.
The discharge of synthetic dyes from industries poses severe environmental challenges, necessitating eco-friendly remediation strategies. This study investigated the biosorption of triarylmethane dyes Crystal Violet (CV), and Brilliant Green (BG) using self-immobilized and sponge-immobilized biosorbents of Trametes versicolor (strain CB8, CB8/S2) and Pleurotus ostreatus (strain BWPH, BWPH/S2). Tests were conducted with live and autoclaved biomass under varying conditions of dye concentration (100–400 mg/L), temperature (15–55 °C), and pH (2–10). Sponge-immobilized live biomass (CB8/S2 and BWPH/S2) showed superior performance, removing up to 90.3% and 81.7% of BG and 43.9% and 39.3% of CV, respectively, within 6 h, demonstrating 3–5 times higher efficiency than self-immobilized biomass for both dyes. Maximum sorption of 379.4 mg/g of BG and 48.9 mg/g of CV was achieved by CB8/S2 at 400 mg/L. Principal Component Analysis biplot confirmed immobilization efficacy, where Dim1 (85.9–91.8% variance) dominated dye concentration and contact time. The optimized conditions for BG removal by CB8/S2 was 20.85–32.17 °C and pH 3.4–6, and for CV, at pH 6.5–7.5 and 30 °C. The percentage of dye sorption data fitted well with the quadratic model (p < 0.05). Fourier transform infrared spectroscopy (FT-IR) analysis indicated that hydrogen bonding and electrostatic interactions facilitated dye binding onto fungal mycelium. Notably, sponge-immobilized biosorbents were reusable without additional treatment. The findings support fungal biomass immobilization as a viable strategy to augment the bioremediation potential in treating dye-laden wastewater. Full article
Show Figures

Graphical abstract

20 pages, 2925 KB  
Article
Mycoremediation of Petroleum-Contaminated Soil Using Native Ganoderma and Trametes Strains from the Ecuadorian Amazon
by Isabel Cipriani-Avila, Cony Decock, Aracely Zambrano-Romero, Katherine Zaldumbide, Mónica Garcés-Ruiz, Jazel Caiza-Olmedo, Ana Gordillo, Verónica Luna and Patrick A. Gerin
J. Fungi 2025, 11(9), 651; https://doi.org/10.3390/jof11090651 - 2 Sep 2025
Viewed by 1933
Abstract
Petroleum-contaminated soils are a major environmental concern worldwide. In Ecuador, extensive oil spills in the Amazon have led to widespread hydrocarbon pollution, threatening ecosystems and posing health risks to nearby communities. Conventional remediation techniques are resource-intensive and may render soil unsuitable for future [...] Read more.
Petroleum-contaminated soils are a major environmental concern worldwide. In Ecuador, extensive oil spills in the Amazon have led to widespread hydrocarbon pollution, threatening ecosystems and posing health risks to nearby communities. Conventional remediation techniques are resource-intensive and may render soil unsuitable for future use. In contrast, mycoremediation—using fungi to degrade toxic contaminants—offers a sustainable alternative. White-rot fungi, known for their ligninolytic enzyme systems such as laccases and peroxidases, are capable of degrading a wide range of organic pollutants, including petroleum hydrocarbons. This study assessed the enzymatic activity of 16 fungal strains from the phyla Ascomycota and Basidiomycota isolated in the Ecuadorian Amazon. Plate-based screening and quantitative laccase activity assays confirmed positive enzymatic activity in all strains. The five strains with the highest enzymatic activity were Ganoderma cf. parvulum QCAM7791, Trametes menziesii QCAM7783, Trametes menziesii QCAM7788, Trametes menziesii QCAM7790, and Trametes meyenii QCAM7785, which were selected for a 60-day soil microcosm experiment under controlled laboratory conditions. These strains removed over 96% of total petroleum hydrocarbons from contaminated soil, demonstrating high biodegradation efficiency. These results highlight the promise of native fungal strains as bioremediation agents for petroleum-contaminated soils. Further studies should focus on evaluating their performance under field conditions and their potential integration into large-scale remediation strategies. Full article
(This article belongs to the Special Issue Fungi Activity on Remediation of Polluted Environments, 2nd Edition)
Show Figures

Figure 1

19 pages, 1050 KB  
Article
Fungal Communities in Soils Contaminated with Persistent Organic Pollutants: Adaptation and Potential for Mycoremediation
by Lazaro Alexis Pedroso Guzman, Lukáš Mach, Jiřina Marešová, Jan Wipler, Petr Doležal, Jiřina Száková and Pavel Tlustoš
Appl. Sci. 2025, 15(15), 8607; https://doi.org/10.3390/app15158607 - 4 Aug 2025
Cited by 1 | Viewed by 1219
Abstract
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal [...] Read more.
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal mining, coal processing, and the chemical industry, predominantly petrochemistry. The elevated contents of persistent organic pollutants (POPs) such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were identified in urban soils due to the long-term industrial pollution. The results confirmed elevated contents of PAHs in all the analyzed soil samples with high variability ranging between 0.5 and 23.3 mg/kg regardless of the position of the sampling area on the city map. PCBs and PCDD/Fs exceeded the detection limits in the soil at the sampling points, and several hotspots were revealed at some locations. All the sampling points contained a diverse community of saprotrophic and mycorrhizal fungi, as determined according to abundant basidiomycetes. Fungal species with a confirmed ability to degrade organic pollutants were found, such as species representing the genera Agaricus from the Agaricaceae family, Coprinopsis from the Psathyrellaceae family, Hymenogaster from the Hymenogasteraceae family, and Pluteus from the Pluteaceae family. These species are accustomed to particular soil conditions as well as the elevated contents of the POPs in them. Therefore, these species could be taken into account when developing potential bioremediation measures to apply in the most polluted areas, and their biodegradation ability should be elucidated in further research. The results of this study contribute to the investigation of the potential use of fungal species for mycoremediation of the areas polluted by a wide spectrum of organic pollutants. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

14 pages, 1442 KB  
Article
Bioremediation of Persistent Organic Pollutant—Oxybenzone with Pleurotus djamor
by Agata Kryczyk-Poprawa, Wojciech Baran, Katarzyna Sułkowska-Ziaja, Katarzyna Kała, Ewa Adamek, Małgorzata Król, Adrián Sánchez-Hidalgo and Bożena Muszyńska
Appl. Sci. 2025, 15(9), 4707; https://doi.org/10.3390/app15094707 - 24 Apr 2025
Viewed by 1601
Abstract
Oxybenzone, a common sunscreen ingredient, has been widely detected in various environmental matrices, posing significant ecological and health risks. The present study demonstrates, for the first time, the capacity of Pleurotus djamor to degrade oxybenzone in in vitro cultures. After 14 days of [...] Read more.
Oxybenzone, a common sunscreen ingredient, has been widely detected in various environmental matrices, posing significant ecological and health risks. The present study demonstrates, for the first time, the capacity of Pleurotus djamor to degrade oxybenzone in in vitro cultures. After 14 days of mycelial incubation, oxybenzone concentrations in the medium decreased from 25 mg to 1.5394 ± 0.095 mg. The final amount of oxybenzone in the mycelium after lyophilization was 6.2067 ± 0.2459 mg. Furthermore, oxybenzone addition significantly reduced biomass growth from 2.510 ± 0.6230 g to 1.4697 ± 0.0465 g. The transformation products in the dry mycelium and medium were assessed and identified using UPLC-Q-tof based on monoisotopic molecular mass and fragmentation spectra. In processes initiated by P. djamor, mainly acylated derivatives of oxybenzone were formed. Additionally, compounds with thiol and amino groups were identified. Alterations in antioxidant profiles (L-tryptophan, 6-methyl-D,L-tryptophan, p-hydroxybenzoic acid, ergosterol, lovastatin, L-phenylalanine, and ergothioneine) in response to oxybenzone exposure were observed. Our findings reveal significant changes in the antioxidant levels and biomass growth inhibition, underscoring the potential toxicological risks associated with oxybenzone. The observed reduction in oxybenzone concentration highlights the potential of P. djamor as an effective and environmentally friendly strategy for mitigating this pollutant. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

37 pages, 9660 KB  
Review
Fungi for Sustainable Pharmaceutical Remediation: Enzymatic Innovations, Challenges, and Applications—A Review
by Mohd Faheem Khan
Processes 2025, 13(4), 1034; https://doi.org/10.3390/pr13041034 - 31 Mar 2025
Cited by 18 | Viewed by 5184
Abstract
The extensive use of pharmaceuticals in human and veterinary medicine has led to their persistent environmental release, posing ecological and public health risks. Major sources include manufacturing effluents, excretion, aquaculture, and improper disposal, contributing to bioaccumulation and ecotoxicity. Mycoremediation is the fungal-mediated biodegradation [...] Read more.
The extensive use of pharmaceuticals in human and veterinary medicine has led to their persistent environmental release, posing ecological and public health risks. Major sources include manufacturing effluents, excretion, aquaculture, and improper disposal, contributing to bioaccumulation and ecotoxicity. Mycoremediation is the fungal-mediated biodegradation of pharmaceuticals, offers a promising and sustainable approach to mitigate pharmaceutical pollution. Studies have reported that certain fungal species, including Trametes versicolor and Pleurotus ostreatus, can degrade up to 90% of pharmaceutical contaminants, such as diclofenac, carbamazepine, and ibuprofen, within days to weeks, depending on environmental conditions. Fungi produce a range of extracellular enzymes, such as laccases and peroxidases, alongside intracellular enzymes like cytochrome P450 monooxygenases, which catalyze the transformation of complex pharmaceutical compounds. These enzymes play an essential role in modifying, detoxifying, and mineralizing xenobiotics, thereby reducing their environmental persistence and toxicity. The effectiveness of fungal biotransformation is influenced by factors such as substrate specificity, enzyme stability, and environmental conditions. Optimal degradation typically occurs at pH 4.5–6.0 and temperatures of 20–30 °C. Recent advancements in enzyme engineering, immobilization techniques, and bioreactor design have improved catalytic efficiency and process feasibility. However, scaling up fungal-based remediation systems for large-scale applications remains a challenge. Addressing these limitations with synthetic biology, metabolic engineering, and other biotechnological innovations could further enhance the enzymatic degradation of pharmaceuticals. This review highlights the enzymatic innovations, applications, and challenges of pharmaceutical mycoremediation, emphasizing the potential of fungi as a transformative solution for sustainable pharmaceutical waste management. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

14 pages, 1338 KB  
Article
The Toxicological Impact of the Ultraviolet Filter Oxybenzone on Antioxidant Profiles in In Vitro Cultures of Lentinula edodes
by Agata Kryczyk-Poprawa, Adrián Sánchez-Hidalgo, Wojciech Baran, Ewa Adamek, Katarzyna Sułkowska-Ziaja, Katarzyna Kała, Bożena Muszyńska and Włodzimierz Opoka
Toxics 2025, 13(3), 145; https://doi.org/10.3390/toxics13030145 - 20 Feb 2025
Cited by 3 | Viewed by 3364
Abstract
A detailed understanding of the toxic effects of organic UV filters, such as oxybenzone, on living organisms is crucial for assessing the feasibility of bioremediation methods. Due to the widespread use of oxybenzone as an ultraviolet filter in sunscreens, it has become an [...] Read more.
A detailed understanding of the toxic effects of organic UV filters, such as oxybenzone, on living organisms is crucial for assessing the feasibility of bioremediation methods. Due to the widespread use of oxybenzone as an ultraviolet filter in sunscreens, it has become an emerging contaminant of concern in the environment. This concern extends to fungi, which have the potential to neutralize a wide variety of xenobiotics released into the environment. The primary objective of the study was to elucidate the alterations of antioxidant profiles of the white-rot fungus Lentinula edodes in response to oxybenzone exposure. Samples with oxybenzone at a final concentration of 0.1 mg mL−1 were cultured in vitro with the mycelium of L. edodes for 14 days. The contents of the following antioxidant compounds were assessed: indole derivatives (6-methyl-D,L-tryptophan, tryptophan), ergothioneine, and phenolic acid (p-hydroxybenzoic acid), as well as lovastatin and ergosterol. The addition of oxybenzone negatively affected biomass growth, reducing it from 3.205 ± 0.4022 g to 0.5803 ± 0.1019 g. A considerable reduction in oxybenzone amounts was found in the medium after incubation (from 25 mg to 0.2993 ± 0.1934 mg). After lyophilization, the mycelium contained 1.1591 ± 0.0323 mg of oxybenzone. Additionally, eleven biotransformation products were assessed in the mycelium and medium samples using UPLC-Q ToF. After incubation, the transformation products were identified based on monoisotopic molecular mass and fragmentation spectra. The observed increase in the content of some antioxidants, e.g., ergothioneine, while reducing the content of others, such as lovastatin, suggests that the impact of xenobiotics on the antioxidant profile of in vitro cultures of L. edodes is complex. Marked alterations in biomass growth suggest a potential toxicological risk associated with oxybenzone. This study contributes to the understanding of the environmental impact of UV filters and emphasizes the need for safer alternatives. Full article
Show Figures

Figure 1

13 pages, 866 KB  
Article
In Vivo Effectiveness of Pleurotus ostreatus in Degradation of Toxic Metabolites of Filamentous Fungi Such as Aflatoxin B1 and Zearalenone
by Agnieszka Zapaśnik, Marcin Bryła, Adrian Wojtczak and Barbara Sokołowska
Metabolites 2025, 15(1), 20; https://doi.org/10.3390/metabo15010020 - 5 Jan 2025
Cited by 3 | Viewed by 3616
Abstract
Background/Objectives: Mycotoxins, secondary metabolites synthesized by filamentous fungi, have been classified as dangerous substances and proven to be carcinogenic, as well as to have genotoxic, nephrotoxic, hepatotoxic, teratogenic, and mutagenic properties. Despite numerous trials to develop an effective and safe-for-human-health method of detoxification, [...] Read more.
Background/Objectives: Mycotoxins, secondary metabolites synthesized by filamentous fungi, have been classified as dangerous substances and proven to be carcinogenic, as well as to have genotoxic, nephrotoxic, hepatotoxic, teratogenic, and mutagenic properties. Despite numerous trials to develop an effective and safe-for-human-health method of detoxification, there is still a high risk associated with the occurrence of these toxins in food and feed. Biological methods of food preservation are an alternative option to conventional chemical and physical methods, characterized by their less negative impact on human health as well as their high efficiency against filamentous fungi and other foodborne pathogens. Mycoremediation is a new biotechnique based on the capability of fungi to detoxify matrices from various pullulans. Ligninolytic enzymes produced by white rot fungi (WRF) characterize a high efficiency in the degradation of various mycotoxins. Methods: In our study, Pleurotus ostreatus, as a representative of WRF, was cultivated on a medium contaminated by AFB1 and ZEN (mushroom substrate and maize) in a few variants of concentration. After the cultivation, medium and fruiting bodies were collected and analyzed with the usage of HPLC and LC/MS methods. Results: The reduction oscillated between 53 and 87% (AFB1) and 73 and 97% (ZEN) depending on the initial concentration of toxins in the medium. Grown fruiting bodies contained insignificant amounts of both toxins. Conclusions: These findings confirm the potential of P. ostreatus as an effective biological agent for reducing mycotoxins in contaminated medium, highlighting its applicability in developing sustainable and safe methods for detoxification. Full article
(This article belongs to the Special Issue Metabolic Properties of Microbial Cells or Enzymes)
Show Figures

Figure 1

18 pages, 11826 KB  
Article
Assessment of Native Wild Macromycete Strains for Mycoremediation of Copper-Contaminated Soils in Coffee Plantations
by Areli Castellanos De La Cruz, Clara Ivette Rincón-Molina, Luis Alberto Manzano-Gómez, Víctor Manuel Ruiz-Valdiviezo, Adriana Gen-Jiménez, Juan José Villalobos-Maldonado, Francisco Alexander Rincón-Molina, Eduardo Garrido-Ramírez and Reiner Rincón-Rosales
Horticulturae 2024, 10(12), 1376; https://doi.org/10.3390/horticulturae10121376 - 21 Dec 2024
Viewed by 1636
Abstract
This study evaluates the mycoremediation potential of wild mushroom species from Chiapas, Mexico, specifically for high copper concentrations. Nine fungal carpophores were collected from tropical forests near coffee plantations. The morphological characteristics of the fungal strains and fruiting bodies were analyzed. Each specimen [...] Read more.
This study evaluates the mycoremediation potential of wild mushroom species from Chiapas, Mexico, specifically for high copper concentrations. Nine fungal carpophores were collected from tropical forests near coffee plantations. The morphological characteristics of the fungal strains and fruiting bodies were analyzed. Each specimen was identified through sequencing using the ITS1 and ITS4 primers. The ability to tolerate different concentrations of copper was evaluated by determining the fungal mycelial growth inhibition potential. Copper bioaccumulation by the fungi was quantified using biosorption assays with atomic absorption spectrophotometry. The enzymatic activity of laccase, lignin peroxidase, and manganese peroxidase from the fungal species was also determined in the presence of copper. Phylogenetic analysis identified the fungal species as Agaricus bisporus, A. subrufescens, Calvatia fragilis, Ganoderma coffeatum, G. lucidum, Pleurotus djmor, P. floridanus, Trametes elegans, and T. versicolor, all classified within the Agaromycetes class. The nine fungal species exhibited varying abilities to tolerate Cu2+ concentrations from 30 to 100 mg L−1. At 30 and 60 mg L−1 Cu2+, the G. lucidum H14-35 strain demonstrated the highest biosorption capacity, reaching 76.97%. Overall, the mushrooms in this study showed strong Cu2⁺ tolerance and biosorption, making them promising biomaterials for remediating copper-contaminated soils. Full article
Show Figures

Figure 1

16 pages, 3048 KB  
Article
Exploring Sustainable Remediation Options: The Mycodegradation of Halogenated Nitroaromatic Compounds by Caldariomyces fumago
by Gerardo Aguilar, Leadin S. Khudur, Kalpit V. Shah and Andrew S. Ball
Sustainability 2024, 16(22), 9897; https://doi.org/10.3390/su16229897 - 13 Nov 2024
Viewed by 2000
Abstract
Chlorinated and fluorinated nitrophenols (HNCs) are widely used in agriculture and industry, with a global market valued at USD $25 billion, one which is expected to grow by 5% by 2030. However, these compounds pose significant environmental risks; they are classified as toxic [...] Read more.
Chlorinated and fluorinated nitrophenols (HNCs) are widely used in agriculture and industry, with a global market valued at USD $25 billion, one which is expected to grow by 5% by 2030. However, these compounds pose significant environmental risks; they are classified as toxic by the International Agency for Research on Cancer (IARC). Existing treatment methods include advanced oxidation, adsorption, and bioremediation, though to date, there has been only limited research on fungal remediation of these halogenated pollutants. This study aims to explore a sustainable approach by using fungi’s potential to degrade HNCs in minimal media. Ten fungi were selected through literature screening; Caldariomyces fumago and Curvularia sp. were highly effective, degrading over 50% of 2-chloro-4-nitrophenol (2C4NP) and 80% of 5-fluoro-2-nitrophenol (5F2NP) within 24 and 48 h, respectively. Additionally, five strains showed degradation potential for fluorinated compounds. Further studies revealed C. fumago could degrade up to 1 mM of chlorinated compounds and 12 mM of fluorinated compounds, far exceeding any known environmental concentrations of HNCs; importantly, ecotoxicology tests demonstrated reductions in toxicity of 77% and 85%, respectively. This work highlights fungi’s underexplored ability to degrade toxic HNCs, offering a sustainable mycoremediation strategy and positioning mycology as a critical tool for future environmental remediation efforts. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

27 pages, 3514 KB  
Review
Modern-Day Green Strategies for the Removal of Chromium from Wastewater
by Komal Pandey, Baljeet Singh Saharan, Ravinder Kumar, Dilfuza Jabborova and Joginder Singh Duhan
J. Xenobiot. 2024, 14(4), 1670-1696; https://doi.org/10.3390/jox14040089 - 3 Nov 2024
Cited by 13 | Viewed by 6731
Abstract
Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent [...] Read more.
Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent form of chromium [Cr(VI)] is particularly toxic and carcinogenic, linked to severe health issues such as cancer, kidney disorders, liver failure, and environmental biomagnification. Due to the high risks associated with chromium contamination in potable water, researchers have focused on developing effective removal strategies. Among these strategies, biosorption has emerged as a promising, cost-effective, and energy-efficient method for eliminating toxic metals, especially chromium. This process utilizes agricultural waste, plants, algae, bacteria, fungi, and other biomass as adsorbents, demonstrating substantial potential for the remediation of heavy metals from contaminated environments at minimal cost. This review paper provides a comprehensive analysis of various strategies, materials, and mechanisms involved in the bioremediation of chromium, along with their commercial viability. It also highlights the advantages of biosorption over traditional chemical and physical methods, offering a thorough understanding of its applications and effectiveness. Full article
Show Figures

Graphical abstract

10 pages, 1751 KB  
Article
Utilization of the Fungus Pycnoporus sp. for Remediation of a Sugarcane Industry Effluent
by Clara Farfán, Verónica Laura Lozano, Claudia Nidia Borja, Florencia Alvarez Dalinger, Camila Muñoz and Liliana Moraña
Sustainability 2024, 16(16), 7020; https://doi.org/10.3390/su16167020 - 15 Aug 2024
Viewed by 1732
Abstract
Lignocellulosic fungi are highly versatile organisms with valuable applications in bioremediation processes, including the biodegradation of agro-industrial effluents. In this work, the use of a native strain of the white-rot fungus, Pycnoporus aff. sanguineus, in the bioremediation of the sugar industry waste [...] Read more.
Lignocellulosic fungi are highly versatile organisms with valuable applications in bioremediation processes, including the biodegradation of agro-industrial effluents. In this work, the use of a native strain of the white-rot fungus, Pycnoporus aff. sanguineus, in the bioremediation of the sugar industry waste called vinasse was studied, originating from the San Martín del Tabacal Sugar Mill, located in the north of the Salta province, Argentina. We studied, under controlled laboratory conditions, the bioremediation process of three concentrations of vinasse (5, 10, and 25% in distilled water) with a native isolated strain. The results showed biomass growth at all three tested concentrations, with a maximum at the highest vinasse concentration (25%), while the percentages of color and Chemical Oxygen Demand (COD) removal indicated that the most efficient treatment was with 10% vinasse. The results obtained are promising for the treatment of effluents from the sugar industry using white-rot fungi, considering the valuable subproducts of Pycnoporus spp. biomass. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop