Sensor-Drift Compensation in Electronic-Nose-Based Gas Recognition Using Knowledge Distillation
Abstract
1. Introduction
- We design a new systematic and statistical experiment protocol for the development and evaluation of drift compensation methods based on the public UCI dataset. We design two realistic domain adaptation tasks: (1) predicting remaining batches using the first batch, and (2) predicting the next batch using all previous batches. Task 1 simulates a well-controlled laboratory environment for model development, while Task 2 mimics a continuously updated training dataset for improved online model training. Most importantly, unlike previous studies that reported accuracy using a single test, statistical significance is tested with 30 random test-set partitions for accuracy, precision, recall, and F1-score to systematically and statistically validate a method’s robust performance under various sensor-drift conditions.
- Based on the refined experiment protocol, we test the KD method (evaluated here under long-term temporal drift with repeated randomized trials and statistical significance testing) and the benchmark DRCA method (previously applied to sensor-drift compensation in electronic noses [23], but whose validity was not systematically tested through rigorous statistical tests in experiments that better simulate real-world application scenarios) using various cross-domain prediction tasks and rigorous statistical tests.
- We explore a novel hybrid approach that combines a data-level domain alignment strategy (DRCA subspace projection) and a model-level adaptation strategy (teacher–student knowledge distillation with soft targets), using electronic-nose gas classification as a test case.
2. Methods
2.1. Dataset Description
- Task 1: use the first batch as the source domain to predict the remaining batches (target domain).
- Task 2: use the first batches as the source domain to predict the n-th batch (target domain).
2.2. Knowledge Distillation
2.2.1. Training the Teacher Model Using Source Domain Data
2.2.2. Training the Student Model for the Target Domain
2.2.3. Hyperparameter Selection
2.3. Domain-Regularized Component Analysis
- (a)
- Mean of source domain measurements:Mean of target domain measurements:and overall mean:
- (b)
- Within-domain scatter for source and target domains:
- (c)
- Between-domain scatter:
2.4. Hybrid Method: KD–DRCA
2.5. Model Development and Evaluation
2.6. Statistical Test
3. Results
3.1. Data Visualization Under Sensor Drift
3.2. Performance of Drift Compensation Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharyya, N.; Bandyopadhyay, R.; Bhuyan, M.; Tudu, B.; Ghosh, D.; Jana, A. Electronic nose for black tea classification and correlation of measurements with “Tea Taster” marks. IEEE Trans. Instrum. Meas. 2008, 57, 1313–1321. [Google Scholar] [CrossRef]
- Sarkodie, K.; Fergusson-Rees, A.; Diaz, P. A review of the application of non-intrusive infrared sensing for gas–liquid flow characterization. J. Comput. Multiph. Flows 2018, 10, 43–56. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Diao, J.; Sun, X.; Luo, Z.; Li, G. Discrimination of different species of dendrobium with an electronic nose using aggregated conformal predictor. Sensors 2019, 19, 964. [Google Scholar] [CrossRef]
- Borowik, P.; Adamowicz, L.; Tarakowski, R.; Wacławik, P.; Oszako, T.; Ślusarski, S.; Tkaczyk, M. Application of a low-cost electronic nose for differentiation between pathogenic oomycetes pythium intermedium and phytophthora plurivora. Sensors 2021, 21, 1326. [Google Scholar] [CrossRef] [PubMed]
- Flammini, A.; Marioli, D.; Taroni, A. A low-cost interface to high-value resistive sensors varying over a wide range. IEEE Trans. Instrum. Meas. 2004, 53, 1052–1056. [Google Scholar] [CrossRef]
- Pace, C.; Fragomeni, L.; Khalaf, W. Developments and applications of electronic nose systems for gas mixtures classification and concentration estimation. In Applications in Electronics Pervading Industry, Environment and Society: APPLEPIES 2014; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–7. [Google Scholar]
- De Vito, S.; Piga, M.; Martinotto, L.; Di Francia, G. CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization. Sens. Actuators B Chem. 2009, 143, 182–191. [Google Scholar] [CrossRef]
- Musatov, V.Y.; Sysoev, V.; Sommer, M.; Kiselev, I. Assessment of meat freshness with metal oxide sensor microarray electronic nose: A practical approach. Sens. Actuators B Chem. 2010, 144, 99–103. [Google Scholar] [CrossRef]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Portable electronic nose based on electrochemical sensors for food quality assessment. Sensors 2017, 17, 2715. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Rodríguez, J.; Durán, C.; Reyes, A. Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests”. Sensors 2009, 10, 36–46. [Google Scholar] [CrossRef]
- Miao, J.; Luo, Z.; Wang, Y.; Li, G. Comparison and data fusion of an electronic nose and near-infrared reflectance spectroscopy for the discrimination of ginsengs. Anal. Methods 2016, 8, 1265–1273. [Google Scholar] [CrossRef]
- Zhan, X.; Guan, X.; Wu, R.; Wang, Z.; Wang, Y.; Li, G. Feature engineering in discrimination of herbal medicines from different geographical origins with electronic nose. In Proceedings of the 2019 IEEE 7th International Conference on Bioinformatics and Computational Biology (ICBCB); IEEE: Piscataway, NJ, USA, 2019; pp. 56–62. [Google Scholar]
- Schmekel, B.; Winquist, F.; Vikström, A. Analysis of breath samples for lung cancer survival. Anal. Chim. Acta 2014, 840, 82–86. [Google Scholar] [CrossRef]
- Zhan, X.; Wang, Z.; Yang, M.; Luo, Z.; Wang, Y.; Li, G. An electronic nose-based assistive diagnostic prototype for lung cancer detection with conformal prediction. Measurement 2020, 158, 107588. [Google Scholar] [CrossRef]
- Rodriguez-Lujan, I.; Fonollosa, J.; Vergara, A.; Homer, M.; Huerta, R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom. Intell. Lab. Syst. 2014, 130, 123–134. [Google Scholar] [CrossRef]
- Jha, S.K.; Hayashi, K.; Yadava, R. Neural, fuzzy and neuro-fuzzy approach for concentration estimation of volatile organic compounds by surface acoustic wave sensor array. Measurement 2014, 55, 186–195. [Google Scholar] [CrossRef]
- Zhan, X.; Guan, X.; Wu, R.; Wang, Z.; Wang, Y.; Luo, Z.; Li, G. Online conformal prediction for classifying different types of herbal medicines with electronic nose. In IET Doctoral Forum on Biomedical Engineering, Healthcare, Robotics and Artificial Intelligence 2018 (BRAIN 2018); IET: Stevenage, UK, 2018. [Google Scholar]
- Yang, S.; Zhang, H.; Li, Z.; Duan, S.; Yan, J. Identification of industrial exhaust based on an electronic nose with an interleaved grouped residual convolutional compression network. Sens. Actuators A Phys. 2023, 363, 114692. [Google Scholar] [CrossRef]
- Hossein-Babaei, F.; Ghafarinia, V. Compensation for the drift-like terms caused by environmental fluctuations in the responses of chemoresistive gas sensors. Sens. Actuators B Chem. 2010, 143, 641–648. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, F.; Liu, S.; Dang, L.; Peng, X.; Yin, X. Chaotic time series prediction of E-nose sensor drift in embedded phase space. Sens. Actuators B Chem. 2013, 182, 71–79. [Google Scholar] [CrossRef]
- Zhan, X.; Liu, Y.; Cecchi, N.J.; Gevaert, O.; Zeineh, M.M.; Grant, G.A.; Camarillo, D.B. Brain deformation estimation with transfer learning for head impact datasets across impact types. IEEE Trans. Biomed. Eng. 2024, 71, 1853–1863. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; He, Z.; Liu, J.; Deng, P.; Zhou, X. Anti-drift in E-nose: A subspace projection approach with drift reduction. Sens. Actuators B Chem. 2017, 253, 407–417. [Google Scholar] [CrossRef]
- Wang, H.; Zhan, X.; Liu, L.; Ullah, A.; Li, H.; Gao, H.; Wang, Y.; Hu, R.; Li, G. Unsupervised cross-user adaptation in taste sensation recognition based on surface electromyography. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Zhan, X.; Sun, J.; Liu, Y.; Cecchi, N.J.; Le Flao, E.; Gevaert, O.; Zeineh, M.M.; Camarillo, D.B. Adaptive machine learning head model across different head impact types using unsupervised domain adaptation and generative adversarial networks. IEEE Sens. J. 2024, 24, 7097–7106. [Google Scholar] [CrossRef]
- Orbes-Arteainst, M.; Cardoso, J.; Sørensen, L.; Igel, C.; Ourselin, S.; Modat, M.; Nielsen, M.; Pai, A. Knowledge distillation for semi-supervised domain adaptation. In Proceedings of the OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging: Second International Workshop, OR 2.0 2019, and Second International Workshop, MLCN 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 13 and 17 October 2019; Proceedings 2; Springer: Cham, Switzerland, 2019; pp. 68–76. [Google Scholar]
- Liu, L.; Zhan, X.; Wu, R.; Guan, X.; Wang, Z.; Zhang, W.; Pilanci, M.; Wang, Y.; Luo, Z.; Li, G. Boost AI power: Data augmentation strategies with unlabeled data and conformal prediction, a case in alternative herbal medicine discrimination with electronic nose. IEEE Sens. J. 2021, 21, 22995–23005. [Google Scholar] [CrossRef]
- Liu, L.; Zhan, X.; Yang, X.; Guan, X.; Wu, R.; Wang, Z.; Luo, Z.; Wang, Y.; Li, G. Cpsc: Conformal prediction with shrunken centroids for efficient prediction reliability quantification and data augmentation, a case in alternative herbal medicine classification with electronic nose. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Vergara, A. Gas Sensor Array Drift Dataset. UCI Machine Learning Repository. 2012. Available online: https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset (accessed on 7 November 2024).
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 2012, 166, 320–329. [Google Scholar] [CrossRef]
- Chang, I.S.; Byun, S.W.; Lim, T.B.; Park, G.M. A study of drift effect in a popular metal oxide sensor and gas recognition using public gas datasets. IEEE Access 2023, 11, 26383–26392. [Google Scholar] [CrossRef]
- Dennler, N.; Rastogi, S.; Fonollosa, J.; Van Schaik, A.; Schmuker, M. Drift in a popular metal oxide sensor dataset reveals limitations for gas classification benchmarks. Sens. Actuators B Chem. 2022, 361, 131668. [Google Scholar] [CrossRef]
- Rehman, A.U.; Belhaouari, S.B.; Ijaz, M.; Bermak, A.; Hamdi, M. Multi-classifier tree with transient features for drift compensation in electronic nose. IEEE Sens. J. 2020, 21, 6564–6574. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar] [CrossRef]
- Liang, J.; Jiang, L.; Hauptmann, A.G. SimAug: Learning Robust Representations from Simulation for Trajectory Prediction. In Proceedings of the Computer Vision–ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12358, pp. 275–292. [Google Scholar] [CrossRef]
- Abbasi, S.; Hajabdollahi, M.; Karimi, N.; Samavi, S. Modeling teacher-student techniques in deep neural networks for knowledge distillation. In Proceedings of the 2020 International Conference on Machine Vision and Image Processing (MVIP); IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Gomes, H.M.; Grzenda, M.; Mello, R.; Read, J.; Le Nguyen, M.H.; Bifet, A. A survey on semi-supervised learning for delayed partially labelled data streams. ACM Comput. Surv. 2022, 55, 1–42. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]




| Target Batch | Best T (Task 1) | Best T (Task 2) |
|---|---|---|
| Batch 2 | 25 | 25 |
| Batch 3 | 200 | 50 |
| Batch 4 | 50 | 200 |
| Batch 5 | 2 | 0.3 |
| Batch 6 | 3 | 25 |
| Batch 7 | 200 | 5 |
| Batch 8 | 1 | 200 |
| Batch 9 | 50 | 25 |
| Batch 10 | 100 | 3 |
| Method | +(p < 0.05) | =(p > 0.05) | −(p < 0.05) | Total |
|---|---|---|---|---|
| KD | 24 (22) | 44 (48) | 4 (2) | 72 (72) |
| DRCA | 11 (12) | 37 (36) | 24 (24) | 72 (72) |
| KD–DRCA | 12 (12) | 38 (36) | 22 (24) | 72 (72) |
| Method | +(p < 0.05) | =(p > 0.05) | −(p < 0.05) | Total |
|---|---|---|---|---|
| KD | 15/9 | 20/24 | 1/3 | 36/36 |
| DRCA | 1/10 | 20/17 | 15/9 | 36/36 |
| KD–DRCA | 1/11 | 20/18 | 15/7 | 36/36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lin, J.; Zhan, X. Sensor-Drift Compensation in Electronic-Nose-Based Gas Recognition Using Knowledge Distillation. Informatics 2026, 13, 15. https://doi.org/10.3390/informatics13010015
Lin J, Zhan X. Sensor-Drift Compensation in Electronic-Nose-Based Gas Recognition Using Knowledge Distillation. Informatics. 2026; 13(1):15. https://doi.org/10.3390/informatics13010015
Chicago/Turabian StyleLin, Juntao, and Xianghao Zhan. 2026. "Sensor-Drift Compensation in Electronic-Nose-Based Gas Recognition Using Knowledge Distillation" Informatics 13, no. 1: 15. https://doi.org/10.3390/informatics13010015
APA StyleLin, J., & Zhan, X. (2026). Sensor-Drift Compensation in Electronic-Nose-Based Gas Recognition Using Knowledge Distillation. Informatics, 13(1), 15. https://doi.org/10.3390/informatics13010015

