High-Intensity Physical Activity During Late Adolescence Predicts Young Adult CT-Based Finite Element Bone Strength in Emerging Adulthood: Iowa Bone Development Study
Abstract
Highlights
- Using CT-based finite element analysis of the tibia, this study found that higher intensity physical activity during late adolescence and emerging adulthood is associated with stronger bone structure.
- Advanced imaging and biomechanical modeling improve bone health estimation.
- High-intensity physical activity during late adolescence and emerging adulthood improves bone strength.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Physical Activity Exposure
2.3. Bone Strength Outcomes
2.4. Other Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | confidence interval |
CT | computed tomography |
CT/FEA | computed tomography-based finite element analysis |
DXA | dual-energy X-ray absorptiometry |
FEA | finite element analysis |
IBDS | Iowa Bone Development Study |
PA | physical activity |
pQCT | peripheral quantitative computed tomography |
References
- Xue, S.; Kemal, O.; Lu, M.; Lix, L.M.; Leslie, W.D.; Yang, S. Age at attainment of peak bone mineral density and its associated factors: The National Health and Nutrition Examination Survey 2005–2014. Bone 2020, 131, 115163. [Google Scholar] [CrossRef]
- Lindgren, E.; Rosengren, B.E.; Karlsson, M.K. Does peak bone mass correlate with peak bone strength? Cross-sectional normative dual energy X-ray absorptiometry data in 1052 men aged 18–28 years. BMC Musculoskelet. Disord. 2019, 20, 404. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.F.; Fielding, R.A. Skeletal muscle power: A critical determinant of physical functioning in older adults. Exerc. Sport Sci. Rev. 2012, 40, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Dulloo, A.G.; Bosy-Westphal, A.; Muller, M.J. Diagnosis of obesity based on body composition-associated health risks—Time for a change in paradigm. Obes. Rev. 2021, 22, e13190. [Google Scholar] [CrossRef]
- Stephen, W.C.; Janssen, I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J. Nutr. Health Aging 2009, 13, 460–466. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, S.-Y.; Kim, D.-I. Association of muscle strength and body mass index with risk factors for metabolic syndrome and its prevalence in Korean adult women. BMC Public Health 2022, 22, 2060. [Google Scholar] [CrossRef]
- Kim, Y.H.; So, W.-Y. A low arm and leg muscle mass to total body weight ratio is associated with an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2010–2011. Technol. Health Care 2016, 24, 655–663. [Google Scholar] [CrossRef]
- Kim, S.; Valdez, R. Metabolic risk factors in U.S. youth with low relative muscle mass. Obes. Res. Clin. Pract. 2015, 9, 125–132. [Google Scholar] [CrossRef]
- Peterson, M.D.; Zhang, P.; Saltarelli, W.A.; Visich, P.S.; Gordon, P.M. Low Muscle Strength Thresholds for the Detection of Cardiometabolic Risk in Adolescents. Am. J. Prev. Med. 2016, 50, 593–599. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, Y.S. Low muscle mass is associated with metabolic syndrome in Korean adolescents: The Korea National Health and Nutrition Examination Survey 2009–2011. Nutr. Res. 2016, 36, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Zembura, M.; Matusik, P. Sarcopenic Obesity in Children and Adolescents: A Systematic Review. Front. Endocrinol. 2022, 13, 914740. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J.; Atkinson, E.J.; O’Connor, M.K.; O’Fallon, W.M.; Riggs, B.L. Bone Density and Fracture Risk in Men. J. Bone Miner. Res. 1998, 13, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Armas, L.A.G.; Lappe, J.M.; Heaney, R.P. Calcium, Bone Strength and Fractures, 2nd ed.; Nova Science Publishers: New York, NY, USA, 2010; pp. 235–241. [Google Scholar]
- Seeman, E.; Delmas, P.D. Bone Quality—The Material and Structural Basis of Bone Strength and Fragility. N. Engl. J. Med. 2006, 354, 2250–2261. [Google Scholar] [CrossRef]
- Stagi, S.; Cavalli, L.; Cavalli, T.; de Martino, M.; Brandi, M.L. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: A review. Ital. J. Pediatr. 2016, 42, 88. [Google Scholar] [CrossRef]
- Imai, K. Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment. World J. Exp. Med. 2015, 5, 182–187. [Google Scholar] [CrossRef]
- Dall’Ara, E.; Pahr, D.; Varga, P.; Kainberger, F.; Zysset, P. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos. Int. 2012, 23, 563–572. [Google Scholar] [CrossRef]
- Zysset, P.K.; Dall’Ara, E.; Varga, P.; Pahr, D.H. Finite element analysis for prediction of bone strength. BoneKEy Rep. 2013, 2, 386. [Google Scholar] [CrossRef]
- Viceconti, M. Predicting bone strength from CT data: Clinical applications. Morphologie 2019, 103, 180–186. [Google Scholar] [CrossRef]
- Wang, X.; Sanyal, A.; Cawthon, P.M.; Palermo, L.; Jekir, M.; Christensen, J.; Ensrud, K.E.; Cummings, S.R.; Orwoll, E.; Black, D.M.; et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J. Bone Miner. Res. 2012, 27, 808–816. [Google Scholar] [CrossRef]
- Allaire, B.T.; Lu, D.; Johannesdottir, F.; Kopperdahl, D.; Keaveny, T.M.; Jarraya, M.; Guermazi, A.; Bredella, M.A.; Samelson, E.J.; Kiel, D.P.; et al. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos. Int. 2019, 30, 323–331. [Google Scholar] [CrossRef]
- Logan, K.; Lloyd, R.S.; Schafer-Kalkhoff, T.; Khoury, J.C.; Ehrlich, S.; Dolan, L.M.; Shah, A.S.; Myer, G.D. Youth sports participation and health status in early adulthood: A 12-year follow-up. Prev. Med. Rep. 2020, 19, 101107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rowlands, A.V.; Edwardson, C.L.; Dawkins, N.P.; Maylor, B.D.; Metcalf, K.M.; Janz, K.F. Physical Activity for Bone Health: How Much and/or How Hard? Med. Sci. Sports Exerc. 2020, 52, 2331–2341. [Google Scholar] [CrossRef]
- Metcalf, K.M.; Letuchy, E.M.; Levy, S.M.; Janz, K.F. An 8-Year Longitudinal Analysis of Physical Activity and Bone Strength From Adolescence to Emerging Adulthood: The Iowa Bone Development Study. Pediatr. Exerc. Sci. 2020, 32, 58–64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janz, K.F.; Letuchy, E.M.; Burns, T.L.; Eichenberger Gilmore, J.M.; Torner, J.C.; Levy, S.M. Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. Br. J. Sports Med. 2014, 48, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
- Troy, K.L.; Mancuso, M.E.; Butler, T.A.; Johnson, J.E. Exercise Early and Often: Effects of Physical Activity and Exercise on Women’s Bone Health. Int. J. Environ. Res. Public Health 2018, 15, 878. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, H.H.; Morgan, E.F.; Niebur, G.L.; Morris, G.E.; Wong, E.K.; Keaveny, T.M. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 2004, 37, 27–35. [Google Scholar] [CrossRef]
- Cole, J.H.; van der Meulen, M.C.H. Whole Bone Mechanics and Bone Quality. Clin. Orthop. Relat. Res. 2011, 469, 2139–2149. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Edwardson, C.L.; Davies, M.J.; Khunti, K.; Harrington, D.M.; Yates, T. Beyond cut points: Accelerometer metrics that capture the physical activity profile. Med. Sci. Sports Exerc. 2018, 50, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Clifford, L.; Brown, D.; Tyler, R. Characteristics of 24-hour movement behaviours and their associations with mental health in children and adolescents. J. Act. Sedentary Sleep Behav. 2023, 2, 11. [Google Scholar] [CrossRef]
- Schwendinger, F.; Knaier, R.; Wagner, J.; Infanger, D.; Lichtenstein, E.; Hinrichs, T.; Rowlands, A.; Schmidt-Trucksäss, A. Relative and absolute intensity accelerometer metrics decipher the effects of age, sex, and occupation on physical activity. BMC Public Health 2025, 25, 885. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.V.; Fairclough, S.J.; Yates, T.O.M.; Edwardson, C.L.; Davies, M.; Munir, F.; Khunti, K.; Stiles, V.H. Activity Intensity, Volume, and Norms: Utility and Interpretation of Accelerometer Metrics. Med. Sci. Sports Exerc. 2019, 51, 2410–2422. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.v.; van Hees, V.T. GGIR: A Research Community?Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef]
- van Hees, V.T.; Gorzelniak, L.; Dean León, E.C.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Imai, K. Analysis of Vertebral Bone Strength, Fracture Pattern, and Fracture Location: A Validation Study Using a Computed Tomography-Based Nonlinear Finite Element Analysis. Aging Dis. 2015, 6, 180–187. [Google Scholar] [CrossRef]
- Crawford, R.P.; Cann, C.E.; Keaveny, T.M. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003, 33, 744–750. [Google Scholar] [CrossRef]
- Guha, I.; Zhang, X.; Rajapakse, C.S.; Chang, G.; Saha, P.K. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling. Med. Phys. 2022, 49, 3886–3899. [Google Scholar] [CrossRef]
- Bessho, M.; Ohnishi, I.; Matsumoto, T.; Ohashi, S.; Matsuyama, J.; Tobita, K.; Kaneko, M.; Nakamura, K. Prediction of proximal femur strength using a CT-based nonlinear finite element method: Differences in predicted fracture load and site with changing load and boundary conditions. Bone 2009, 45, 226–231. [Google Scholar] [CrossRef]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Millen, A.E.; Midthune, D.; Thompson, F.E.; Kipnis, V.; Subar, A.F. The National Cancer Institute Diet History Questionnaire: Validation of Pyramid Food Servings. Am. J. Epidemiol. 2006, 163, 279–288. [Google Scholar] [CrossRef]
- Janz, K.F.; Baptista, F.; Ren, S.; Zhu, W.; Laurson, K.R.; Mahar, M.T.; Pavlovic, A.; Welk, G.J. Associations among Musculoskeletal Fitness Assessments and Health Outcomes: The Lisbon Study for the Development and Evaluation of Musculoskeletal Fitness Standards in Youth. Meas. Phys. Educ. Exerc. Sci. 2022, 26, 297–305. [Google Scholar] [CrossRef]
- Janz, K.F.; Laurson, K.R.; Baptista, F.; Mahar, M.T.; Welk, G.J. Vertical Jump Power Is Associated with Healthy Bone Outcomes in Youth: ROC Analyses and Diagnostic Performance. Meas. Phys. Educ. Exerc. Sci. 2022, 26, 315–323. [Google Scholar] [CrossRef]
- Macdonald, H.; Kontulainen, S.; Petit, M.; Janssen, P.; McKay, H. Bone strength and its determinants in pre- and early pubertal boys and girls. Bone 2006, 39, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Saint-Maurice, P.F.; Laurson, K.; Welk, G.J.; Eisenmann, J.; Gracia-Marco, L.; Artero, E.G.; Ortega, F.; Ruiz, J.R.; Moreno, L.A.; Vicente-Rodriguez, G.; et al. Grip strength cutpoints for youth based on a clinically relevant bone health outcome. Arch. Osteoporos. 2018, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.C.; Janz, K.F.; Letuchy, E.M.; Peterson, C.; Levy, S.M. Contribution of High School Sport Participation to Young Adult Bone Strength. Med. Sci. Sports Exerc. 2018, 51, 1064–1072. [Google Scholar] [CrossRef]
- Janz, K.F.; Letuchy, E.M.; Burns, T.L.; Francis, S.L.; Levy, S.M. Muscle Power Predicts Adolescent Bone Strength: Iowa Bone Development Study. Med. Sci. Sports Exerc. 2015, 47, 2201–2206. [Google Scholar] [CrossRef]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.N.; Rosenstein, M.T. Cross-validation of three jump power equations. Med. Sci. Sports Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef]
- Cheuk, K.Y.; Lam, T.P.; Wong, L.L.N.; Hung, A.L.H.; Mak, A.F.T.; Lee, K.M.; Ng, B.K.W.; Cheng, J.C.Y. Evaluating bone strength with finite element analysis for Adolescent Idiopathic Scoliosis (AIS): A case-control study with HR-pQCT. Scoliosis 2015, 10, O20. [Google Scholar] [CrossRef]
- Brailey, G.; Metcalf, B.; Lear, R.; Price, L.; Cumming, S.; Stiles, V. A comparison of the associations between bone health and three different intensities of accelerometer-derived habitual physical activity in children and adolescents: A systematic review. Osteoporos. Int. 2022, 33, 1191–1222. [Google Scholar] [CrossRef]
- Brailey, G.; Metcalf, B.; Price, L.; Cumming, S.; Stiles, V. Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. Sensors 2023, 23, 6943. [Google Scholar] [CrossRef]
Variables | Females (n = 152) | Males (n = 114) |
---|---|---|
Mean ± SD | Mean ± SD | |
Age (years) | 23.5 ± 0.5 | 23.4 ± 0.6 |
Height (cm) | 166.2 ± 7.0 | 180.0 ± 8.1 |
Weight (kg) | 74.6 ± 20.3 | 91.3 ± 22.0 |
Calcium intake (mg/day) | 818 ± 590 | 1218 ± 792 |
Handgrip strength a (kg) | 28.3 ± 6.0 | 43.8 ± 10.0 |
Jump power a (Watts) | 3557 ± 869 | 5104 ± 1023 |
Average acceleration b (mg) | 14.97 ± 4.16 | 15.84 ± 3.92 |
Intensity gradient b | −2.93 ± 0.22 | −2.90 ± 0.20 |
Proportion worn b (%) | 0.88 ± 0.09 | 0.87 ± 0.08 |
Compressive modulus (MPa) | 3427 ± 695 | 4166 ± 978 |
Compressive stiffness (KN/mm) | 506 ± 93 | 657 ± 137 |
Female | Male | |||
---|---|---|---|---|
Predictor | β | 95% CI | β | 95% CI |
Age (years) | −18 | −214, 179 | 128 | −204, 459 |
Height (cm) | −18 | −36, 1 | −36 * | −64, −8 |
Weight (kg) | 8 | −3, 20 | −10 | −24, 4 |
Calcium intake (mg/day) | 0.02 | −0.2, 0.2 | 0.04 | −0.2, 0.3 |
Handgrip strength (kg) a | 16 | −6, 39 | −12 | −36, 12 |
Jump power (Watts) a | 0.01 | −0.3, 0.3 | 0.3 | −0.1, 1 |
Average acceleration (mg) b | −9 | −39, 21 | 27 | −23, 77 |
Intensity gradient b | 785 ** | 222, 1348 | −20 | −1045, 1006 |
Female | Male | |||
---|---|---|---|---|
Predictor | β | 95% CI | β | 95% CI |
Age (years) | −8 | −32, 17 | 14 | −22, 50 |
Height (cm) | −2 * | −5, 0 | −9 ** | −12, −6 |
Weight (kg) | 1 | −0.1, 3 | −0.4 | −2, 1 |
Calcium intake (mg/day) | −0.001 | −0.02, 0.02 | 0.03 * | 0.004, 0.1 |
Handgrip strength (kg) a | 2 | −0.4, 5 | 1 | −1, 4 |
Jump power (Watts) a | 0.02 | −0.02, 0.1 | 0.1 ** | 0.04, 0.1 |
Average acceleration (mg) b | −1 | −5, 3 | 1 | −4, 7 |
Intensity gradient b | 113 ** | 44,182 | 228 ** | 117, 339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Janz, K.F.; Guha, I.; Rowlands, A.V.; Rysavy, O.; Saha, P.K.; Pendleton, C.; Shin, E.D.; Levy, S.M. High-Intensity Physical Activity During Late Adolescence Predicts Young Adult CT-Based Finite Element Bone Strength in Emerging Adulthood: Iowa Bone Development Study. Children 2025, 12, 1204. https://doi.org/10.3390/children12091204
Kwon S, Janz KF, Guha I, Rowlands AV, Rysavy O, Saha PK, Pendleton C, Shin ED, Levy SM. High-Intensity Physical Activity During Late Adolescence Predicts Young Adult CT-Based Finite Element Bone Strength in Emerging Adulthood: Iowa Bone Development Study. Children. 2025; 12(9):1204. https://doi.org/10.3390/children12091204
Chicago/Turabian StyleKwon, Soyang, Kathleen F. Janz, Indranil Guha, Alex V. Rowlands, Oscar Rysavy, Punam K. Saha, Chandler Pendleton, Euisung D. Shin, and Steven M. Levy. 2025. "High-Intensity Physical Activity During Late Adolescence Predicts Young Adult CT-Based Finite Element Bone Strength in Emerging Adulthood: Iowa Bone Development Study" Children 12, no. 9: 1204. https://doi.org/10.3390/children12091204
APA StyleKwon, S., Janz, K. F., Guha, I., Rowlands, A. V., Rysavy, O., Saha, P. K., Pendleton, C., Shin, E. D., & Levy, S. M. (2025). High-Intensity Physical Activity During Late Adolescence Predicts Young Adult CT-Based Finite Element Bone Strength in Emerging Adulthood: Iowa Bone Development Study. Children, 12(9), 1204. https://doi.org/10.3390/children12091204