Preterm-Born Young Women Have Weaker Hand Grip Strength Compared to Their Full-Term-Born Peers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Participants
3.2. Vitamin D
3.3. Hand Grip Strength
3.4. Protein Intake and Exercise Habits
3.5. Vitamin D and Hand Grip Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohuma, E.O.; Moller, A.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Stoelhorst, G.M.S.J.; Rijken, M.; Martens, S.E.; Brand, R.; den Ouden, L.A.; Wit, J.-M.; Veen, S. Changes in Neonatology: Comparison of Two Cohorts of Very Preterm Infants (Gestational Age < 32 Weeks): The Project on Preterm and Small for Gestational Age Infants 1983 and The Leiden Follow-Up Project on Prematurity 1996–1997. Pediatrics 2005, 115, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Risnes, K.; Bilsteen, J.F.; Brown, P.; Pulakka, A.; Andersen, A.M.N.; Opdahl, S.; Kajantie, E.; Sandin, S. Mortality among Young Adults Born Preterm and Early Term in 4 Nordic Nations. JAMA Netw. Open 2021, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Crump, C.; Sundquist, J.; Winkleby, M.A.; Sundquist, K. Gestational age at birth and mortality from infancy into mid-adulthood: A national cohort study. Lancet Child Adolesc. Health 2019, 3, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Raju, T.N.K.; Buist, A.S.; Blaisdell, C.J.; Moxey-Mims, M.; Saigal, S. Adults born preterm: A review of general health and system-specific outcomes. Acta Paediatr. 2017, 106, 1409–1437. [Google Scholar] [CrossRef] [PubMed]
- Tikanmäki, M.; Tammelin, T.; Sipola-Leppänen, M.; Kaseva, N.; Matinolli, H.-M.; Miettola, S.; Eriksson, J.G.; Järvelin, M.-R.; Vääräsmäki, M.; Kajantie, E. Physical Fitness in Young Adults Born Preterm. Pediatrics 2016, 137, e20151289. [Google Scholar] [CrossRef] [PubMed]
- Abrams, G.D.; Feldman, D.; Safran, M.R. Effects of Vitamin D on skeletal muscle and athletic performance. J. Am. Acad. Orthop. Surg. 2018, 26, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.Y.; Bruyère, O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef]
- Chiang, C.; Ismaeel, A.; Griffis, R.B.; Weems, S. Effects of Vitamin D Supplementation on Muscle Strength in Athletes: A Systematic Review. J. Strength Cond. Res. 2017, 31, 566–574. [Google Scholar] [CrossRef]
- Gunton, J.E.; Girgis, C.M. Vitamin D and muscle. Bone Rep. 2018, 8, 163–167. [Google Scholar] [CrossRef]
- Ksiażek, A.; Zagrodna, A.; Słowińska-Lisowska, M. Vitamin D, skeletal muscle function and athletic performance in athletes—A narrative review. Nutrients 2019, 11, 1800. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Girgis, C.M. Vitamin D and Skeletal Muscle: Emerging Roles in Development, Anabolism and Repair. Calcif. Tissue Int. 2020, 106, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Srikuea, R.; Hirunsai, M.; Charoenphandhu, N. Regulation of vitamin D system in skeletal muscle and resident myogenic stem cell during development, maturation, and ageing. Sci. Rep. 2020, 10, 8239. [Google Scholar] [CrossRef] [PubMed]
- Pludowski, P.; Holick, M.F.; Pilz, S.; Wagner, C.L.; Hollis, B.W.; Grant, W.B.; Shoenfeld, Y.; Lerchbaum, E.; Llewellyn, D.J.; Kienreich, K.; et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—A review of recent evidence. Autoimmun. Rev. 2013, 12, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Gonzalez, M.C.; Schulzke, J.D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Granlund, L.; Norberg, M.; Ramnemark, A.; Andersson, C.; Lindkvist, M.; Fhärm, E. Vitamin D is associated with lower limb muscle strength and grip strength in Middle Eastern– and African-born immigrants in Sweden. Nutr. Res. 2018, 59, 29–35. [Google Scholar] [CrossRef]
- Norman, K.; Kirchner, H.; Freudenreich, M.; Ockenga, J.; Lochs, H.; Pirlich, M. Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease—A randomized controlled trial. Clin. Nutr. 2008, 27, 48–56. [Google Scholar] [CrossRef]
- Kalliokoski, P.; Rodhe, N.; Bergqvist, Y.; Löfvander, M. Long-term adherence and effects on grip strength and upper leg performance of prescribed supplemental vitamin D in pregnant and recently pregnant women of Somali and Swedish birth with 25-hydroxyvitamin D deficiency: A before-and-after treatment study. BMC Pregnancy Childbirth 2016, 16, 353. [Google Scholar] [CrossRef]
- Ahlqvist, V.H.; Persson, M.; Ortega, F.B.; Tynelius, P.; Magnusson, C.; Berglind, D. Birth weight and grip strength in young Swedish males: A longitudinal matched sibling analysis and across all body mass index ranges. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Dodds, R.; Denison, H.J.; Ntani, G.; Cooper, R.; Cooper, C.; Sayer, A.A.; Baird, J. Birth weight and muscle strength: A systematic review and meta-analysis. J. Nutr. 2012, 16, 609–615. [Google Scholar] [CrossRef]
- Ikonen, H.; Lumme, J.; Seppälä, J.; Pesonen, P.; Piltonen, T.; Järvelin, M.R.; Herzig, K.H.; Miettunen, J.; Niinimäki, M.; Palaniswamy, S.; et al. The determinants and longitudinal changes in vitamin D status in middle-age: A Northern Finland Birth Cohort 1966 study. Eur. J. Nutr. 2021, 60, 4541–4553. [Google Scholar] [CrossRef] [PubMed]
- Sainio, P.; Stenholm, S.; Valkeinen, H.; Vaara, M.; Heliövaara, M.; Koskinen, S. Fyysinen toimintakyky. In Terveys, Toimintakyky ja Hyvinvointi Suomessa: FinTerveys 2017-Tutkimus; Koponen, P., Barodulin, K., Lundqvist, A., Sääksjärvi, K., Koskinen, S., Eds.; Finnish Institute for Health and Welfare: Helsinki, Finland, 2018; Available online: http://urn.fi/URN:ISBN:978-952-343-105-8 (accessed on 17 October 2023).
- TOIMIA Functioning Measures Database. Finnish Institute for Health and Welfare. Available online: https://thl.fi/en/web/functioning/toimia-functioning-measures-database/ (accessed on 17 October 2023).
- Fineli. National Food Composition Database in Finland. Available online: https://fineli.fi/fineli/en (accessed on 20 November 2023).
- WHO. WHO Guidelines on Physical Activity and Sedentary Behaviour. World Health Organization: Geneva, Switzerland, 2020; Available online: https://iris.who.int/bitstream/handle/10665/336656/9789240015128-eng.pdf?isAllowed=y&sequence=1 (accessed on 20 November 2023).
- Morrison, K.M.; Gunn, E.; Guay, S.; Obeid, J.; Schmidt, L.A.; Saigal, S. Grip strength is lower in adults born with extremely low birth weight compared to term-born controls. Pediatr. Res. 2021, 89, 996–1003. [Google Scholar] [CrossRef]
- Cheung, C.L.; Nguyen, U.S.D.T.; Au, E.; Tan, K.C.B.; Kung, A.W.C. Association of handgrip strength with chronic diseases and multimorbidity: A cross-sectional study. Age 2013, 35, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, K.; Magnusson, P.K.E.; Tynelius, P.; Batty, G.D.; Rasmussen, F. Association of body size and muscle strength with incidence of coronary heart disease and cerebrovascular diseases: A population-based cohort study of one million Swedish men. Int. J. Epidemiol. 2009, 38, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Jensen, C.B.; Storgaard, H.; Madsbad, S.; Richter, E.A.; Vaag, A.A. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. J. Clin. Endocrinol. Metab. 2007, 92, 1530–1534. [Google Scholar] [CrossRef]
- Deprez, A.; Orfi, Z.; Radu, A.; He, Y.; Ravizzoni Dartora, D.; Dort, J.; Dumont, N.A.; Nuyt, A.M. Transient neonatal exposure to hyperoxia, an experimental model of preterm birth, leads to skeletal muscle atrophy and fiber type switching. Clin. Sci. 2021, 135, 2589–2605. [Google Scholar] [CrossRef]
- Derraik, J.G.B.; Lundgren, M.; Cutfield, W.S.; Ahlsson, F. Association between preterm birth and lower adult height in women. Am. J. Epidemiol. 2017, 185, 48–53. [Google Scholar] [CrossRef]
- Eide, M.G.; Øyen, N.; Skjœrven, R.; Nilsen, S.T.; Bjerkedal, T.; Tell, G.S. Size at birth and gestational age as predictors of adult height and weight. Epidemiology 2005, 16, 175–181. [Google Scholar] [CrossRef]
- Tuvemo, T.; Cnattingius, S.; Jonsson, B. Prediction of Male Adult Stature Using Anthropometric Data at Birth: A Nationwide Population-Based Study. Pediatr. Res. 1999, 46, 491. [Google Scholar] [CrossRef] [PubMed]
- Lapidaire, W.; Proaño, A.; Blumenberg, C.; Loret de Mola, C.; Delgado, C.A.; del Castillo, D.; Wehrmeister, F.C.; Gonçalves, H.; Gilman, R.H.; Oberhelman, R.A.; et al. Effect of preterm birth on growth and blood pressure in adulthood in the Pelotas 1993 cohort. Int. J. Epidemiol. 2023, dyad084. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.C.; Wright, N.P.; Gibson, A.T.; Carney, S.; Wright, A.; Wales, J.K. Adult height of preterm infants: A longitudinal cohort study. Arch. Dis. Child 2017, 102, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Beckmann, J.; Gandhi, R.; Hurst, J.R.; Morris, J.K.; Marlow, N. Growth to early adulthood following extremely preterm birth: The EPICure Study. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, E.; Johansson, A.M.; Rönnqvist, L. Handedness in preterm born children: A systematic review and a meta-analysis. Neuropsychologia 2011, 49, 2299–2310. [Google Scholar] [CrossRef]
- Raaijmakers, A.; Jacobs, L.; Rayyan, M.; van Tienoven, T.; Ortibus, E.; Levtchenko, E.; Staessen, J.A.; Allegaert, K. Catch-up growth in the first two years of life in extremely low birth weight (ELBW) infants is associated with lower body fat in young adolescence. PLoS ONE 2017, 12, e0173349. [Google Scholar] [CrossRef] [PubMed]
- Fricke, O.; Roedder, D.; Kribs, A.; Tutlewski, B.; von Kleist-Retsow, J.; Herkenrath, P.; Roth, B.; Schoenau, E. Relationship of muscle function to auxology in preterm born children at the age of seven years. Horm. Res. Paediatr. 2010, 73, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Clemm, H.H.; Vollsæter, M.; Røksund, O.D.; Markestad, T.; Halvorsen, T. Adolescents who were born extremely preterm demonstrate modest decreases in exercise capacity. Acta Paediatr. 2015, 104, 1174–1181. [Google Scholar] [CrossRef]
- Klingberg, E.; Oleröd, G.; Konar, J.; Petzold, M.; Hammarsten, O. Seasonal variations in serum 25-hydroxy vitamin D levels in a Swedish cohort. Endocrine 2015, 49, 800–808. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Kazantzidis, A.; Ryan, M.J.; Barber, N.; Sempos, C.T.; Durazo-Arvizu, R.A.; Jorde, R.; Grimnes, G.; Eiriksdottir, G.; Gudnason, V.; et al. Seasonal changes in vitamin D-effective UVB availability in Europe and associations with population serum 25-hydroxyvitamin D. Nutrients 2016, 8, 533. [Google Scholar] [CrossRef]
Serum-25-OHD Concentration | Daily Vitamin D Supplementation |
---|---|
<30 nmol/L (<12 ng/mL) | 4000 IU = 100 µg |
30–50 nmol/L (12–20 ng/mL) | 2000 IU = 50 µg |
50–79 nmol/L (20–31.6 ng/mL) | 1000 IU = 25 µg |
≥80 nmol/L (≥32 ng/mL) | No additional supplement |
Birth Characteristics | PT (N = 38) | FT (N = 39) | p-Value |
---|---|---|---|
Birth Weight, Grams, Mean (SD) | 1397.0 (300.7) | 3517.2 (470.0) | <0.001 |
Birth Length, Centimetres, Mean (SD) | 39.2 (2.5) | 50.2 (1.9) | <0.001 |
Gestational Age at Birth, Weeks, Mean (SD) | 30.5 (1.3) | 39.2 (1.1) | <0.001 |
SGA (P05.0, P05.1, or P05.9), Number (%) | 8 (21.1) | 1 (2.6) | |
ELBW, Number (%) | 6 (15.8) | - | |
Female/Male, Number | 22/16 | 23/16 | |
Present Characteristics | |||
Age, Years, Mean (SD) | 23.6 (0.7) | 24.3 (0.8) | <0.001 |
Female | 23.3 (0.6) | 24.4 (0.8) | <0.001 |
Male | 24.0 (0.7) | 24.1 (0.8) | 0.836 |
Weight, Kilograms, Mean (SD) Female | |||
62.4 (11.4) | 63.9 (13.4) | 0.725 | |
* 60.2 (57, 65.5) | |||
Male | 72.5 (10.4) | 77.6 (12.4) | 0.218 |
Height, Centimetres, Mean (SD) | |||
Female | 162.6 (5.5) | 166.7 (5.2) | 0.016 |
Male | 176.2 (5.9) | 179.2 (7.2) | 0.222 |
Waist-to-Hip Ratio, Mean (SD) | |||
Female | 0.78 (0.06) | 0.76 (0.04) | 0.278 |
Male | 0.86 (0.05) | 0.86 (0.04) | 0.838 |
* 0.86 (0.8, 0.9) | |||
BMI, kg/m2, Mean (SD) | |||
Female | 23.5 (3.8) | 22.9 (4.2) | 0.440 |
* 22.1 (21.0, 24.2) | |||
Male | 23.3 (3.2) | 24.1 (3.5) | 0.509 |
PT First Visit | PT Control Visit | FT | |
---|---|---|---|
S-25-OHD, nmol/L, Mean (SD) | |||
Female | 61.6 (21.2) 1 | 81.4 (25.7) 1 | 56.9 (12.9) |
Male | 58.4 (15.0) 1 | 85.2 (26.5) 1 | 59.4 (17.7) |
* 79.0 (68.0, 93.0) | |||
All | 60.3 (18.7) 1 | 82.9 (25.8) 1 | 57.9 (14.9) |
* 79.0 (63.5, 95.5) | |||
P-Ca, mmol/L, Mean (SD) | |||
Female | 2.33 (0.08) | 2.36 (0.08) | 2.34 (0.09) |
Male | 2.38 (0.07) | 2.39 (0.07) | 2.34 (0.07) |
All | 2.35 (0.08) | 2.37 (0.08) | 2.34 (0.08) |
P-Pi, mmol/L, Mean (SD) | |||
Female | 1.10 (0.19) | 1.18 (0.18) | 1.20 (0.20) |
Male | 1.04 (0.16) 1 | 1.17 (0.18) 1 | 1.14 (0.17) |
* 1.04 (0.92, 1.09) | |||
All | 1.07 (0.18) 1,2 | 1.17 (0.18) 1 | 1.18 (0.19) 2 |
P-AFOS, U/L, Mean (SD) | |||
Female | 62.8 (13.9) | 60.1 (16.8) | 61.7 (18.8) |
* 56.0 (48.5, 70.0) | * 57.0 (48.0, 70.0) | ||
Male | 70.6 (12.0) | 67.2 (12.0) | 67.0 (21.1) |
* 61.5 (51.3, 79.5) | |||
All | 66.1 (13.5) 1 | 63.1 (15.2) 1 | 63.9 (19.7) |
* 61.0 (50.0, 71.0) |
PT First Visit | PT Control Visit | FT | |
---|---|---|---|
N = 38, 22 F/16 M | N = 38, 22 F/15 M | N = 39, 23 F/16 M | |
Best Hand Grip, kg (SD) | |||
Female | 30.3 (5.9) 1 | 30.2 (4.8) | 33.8 (4.8) 1 |
Male | 47.4 (5.4) | 49.6 (4.6) | 49.3 (7.8) |
PT | FT | p-Value | |
---|---|---|---|
Protein Intake (g/kg) n = 71 | 1.12 (0.38) | 1.31 (0.28) | 0.018 |
Female, n = 43 | 1.13 (0.38) | 1.27 (0.28) | 0.190 |
Male, n = 28 | 1.10 (0.39) | 1.38 (0.28) | 0.037 |
Fulfil WHO Recommendation, n = 70 | |||
Aerobic Exercise, Number (%) | 22 (62.9) | 31 (88.6%) | 0.012 |
Female, n = 42 | 12 (60%) | 20 (90.9%) | 0.019 |
Male, n = 28 | 10 (66.7%) | 11 (84.6%) | 0.274 |
Strength Training, Number (%) | 17 (48.6%) | 20 (57.1%) | 0.473 |
Female, n = 42 | 9 (45%) | 12 (54.5%) | 0.537 |
Male, n = 28 | 8 (53.3%) | 8 (61.5%) | 0.662 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruun, E.; Pätsi, P.; Leskinen, M.; Björkman, K.; Kulmala, P.; Tulppo, M.P.; Valkama, M.; Ojaniemi, M. Preterm-Born Young Women Have Weaker Hand Grip Strength Compared to Their Full-Term-Born Peers. Children 2023, 10, 1898. https://doi.org/10.3390/children10121898
Bruun E, Pätsi P, Leskinen M, Björkman K, Kulmala P, Tulppo MP, Valkama M, Ojaniemi M. Preterm-Born Young Women Have Weaker Hand Grip Strength Compared to Their Full-Term-Born Peers. Children. 2023; 10(12):1898. https://doi.org/10.3390/children10121898
Chicago/Turabian StyleBruun, Ella, Pauli Pätsi, Markku Leskinen, Krista Björkman, Petri Kulmala, Mikko P. Tulppo, Marita Valkama, and Marja Ojaniemi. 2023. "Preterm-Born Young Women Have Weaker Hand Grip Strength Compared to Their Full-Term-Born Peers" Children 10, no. 12: 1898. https://doi.org/10.3390/children10121898
APA StyleBruun, E., Pätsi, P., Leskinen, M., Björkman, K., Kulmala, P., Tulppo, M. P., Valkama, M., & Ojaniemi, M. (2023). Preterm-Born Young Women Have Weaker Hand Grip Strength Compared to Their Full-Term-Born Peers. Children, 10(12), 1898. https://doi.org/10.3390/children10121898