Pleiotropic Effects of Oral Anticoagulant Therapy: Is There a Difference Between VKAs and DOACs?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Determinations
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Circulating Biomarkers According to the Type of OAC
- -
- Group 1: patients in which the anti-inflammatory response overwhelms the pro-inflammatory cytokines (e.g., pro-inflammatory cytokines in the first or second tertiles and anti-inflammatory cytokines in the third tertile);
- -
- Group 2: patients with a balanced anti-/pro-inflammatory cytokines ratio (e.g., pro-inflammatory and anti-inflammatory cytokines in the same tertiles);
- -
- Group 3: patients with pro-inflammatory cytokines not compensated by anti-inflammatory cytokines (e.g., pro-inflammatory cytokines in the third tertile and anti-inflammatory cytokines in the first or second tertiles).
3.2. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Ruddox, V.; Sandven, I.; Munkhaugen, J.; Skattebu, J.; Edvardsen, T.; Otterstad, J.E. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2017, 24, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Bassand, J.-P.; Accetta, G.; Al Mahmeed, W.; Corbalan, R.; Eikelboom, J.; Fitzmaurice, D.A.; Fox, K.A.A.; Gao, H.; Goldhaber, S.Z.; Goto, S.; et al. Risk factors for death, stroke, and bleeding in 28,628 patients from the GARFIELD-AF registry: Rationale for comprehensive management of atrial fibrillation. PLoS ONE 2018, 13, e0191592. [Google Scholar] [CrossRef]
- Bassand, J.-P.; Accetta, G.; Camm, A.J.; Cools, F.; Fitzmaurice, D.A.; Fox, K.A.; Goldhaber, S.Z.; Goto, S.; Haas, S.; Hacke, W.; et al. Two-year outcomes of patients with newly diagnosed atrial fibrillation: Results from GARFIELD-AF. Eur. Heart J. 2016, 37, 2882–2889. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Zhang, Q.; Much, A.A.; Maor, E.; Segev, A.; Beinart, R.; Adawi, S.; Lu, Y.; Bragazzi, N.L.; Wu, J. Global, regional, and national prevalence, incidence, mortality, and risk factors for atrial fibrillation, 1990–2017: Results from the Global Burden of Disease Study 2017. Eur. Heart J. Qual. Care Clin. Outcomes 2021, 7, 574–582. [Google Scholar] [CrossRef]
- Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; Emdin, C.A. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ 2016, 354, i4482. [Google Scholar] [CrossRef]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef]
- Pokorney, S.D.; Piccini, J.P.; Stevens, S.R.; Patel, M.R.; Pieper, K.S.; Halperin, J.L.; Breithardt, G.; Singer, D.E.; Hankey, G.J.; Hacke, W.; et al. Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients with Nonvalvular Atrial Fibrillation: Data From ROCKET AF. J. Am. Heart Assoc. 2016, 5, e002197. [Google Scholar] [CrossRef]
- Guo, Y.; Lip, G.Y.; Apostolakis, S. Inflammation in atrial fibrillation. J. Am. Coll. Cardiol. 2012, 60, 2263–2270. [Google Scholar] [CrossRef]
- Watson, T.; Shantsila, E.; Lip, G.Y. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 2009, 373, 155–166. [Google Scholar] [CrossRef]
- Harada, M.; Van Wagoner, D.R.; Nattel, S. Role of inflammation in atrial fibrillation pathophysiology and management. Circ. J. 2015, 79, 495–502. [Google Scholar] [CrossRef]
- Poggesi, A.; Barbato, C.; Galmozzi, F.; Camilleri, E.; Cesari, F.; Chiti, S.; Diciotti, S.; Galora, S.; Giusti, B.; Gori, A.M.; et al. Role of Biological Markers for Cerebral Bleeding Risk STRATification in Patients with Atrial Fibrillation on Oral Anticoagulants for Primary or Secondary Prevention of Ischemic Stroke (Strat-AF Study): Study Design and Methodology. Medicina 2019, 55, 626. [Google Scholar] [CrossRef]
- Hemker, H.C.; Al Dieri, R.; De Smedt, E.; Béguin, S. Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb. Haemost. 2006, 96, 553–561. [Google Scholar]
- Lisman, T.; de Groot, P.G.; Meijers, J.C.; Rosendaal, F.R. Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis. Blood 2005, 105, 1102–1105. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.M.; Cesari, F.; Marcucci, R.; Giusti, B.; Paniccia, R.; Antonucci, E.; Gensini, G.F.; Abbate, R. The balance between pro- and anti-inflammatory cytokines is associated with platelet aggregability in acute coronary syndrome patients. Atherosclerosis 2009, 202, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-F.; Chen, Y.-J.; Lin, Y.-J.; Chen, S.-A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 2015, 12, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Leftheriotis, D.I.; Fountoulaki, K.T.; Flevari, P.G.; Parissis, J.T.; Panou, F.K.; Andreadou, I.T.; Venetsanou, K.S.; Iliodromitis, E.K.; Kremastinos, D.T. The predictive value of inflammatory and oxidative markers following the successful cardioversion of persistent lone atrial fibrillation. Int. J. Cardiol. 2009, 135, 361–369. [Google Scholar] [CrossRef]
- Henningsen, K.M.; Therkelsen, S.K.; Bruunsgaard, H.; Krabbe, K.S.; Pedersen, B.K.; Svendsen, J.H. Prognostic impact of hs-CRP and IL-6 in patients with persistent atrial fibrillation treated with electrical cardioversion. Scand. J. Clin. Lab. Investig. 2009, 69, 425–432. [Google Scholar] [CrossRef]
- Henningsen, K.M.; Nilsson, B.; Bruunsgaard, H.; Chen, X.; Pedersen, B.K.; Svendsen, J.H. Prognostic impact of hs-CRP and IL-6 in patients undergoing radiofrequency catheter ablation for atrial fibrillation. Scand. Cardiovasc. J. 2009, 43, 285–291. [Google Scholar] [CrossRef]
- Jia, X.; Cheng, X.; Wu, N.; Xiang, Y.; Wu, L.; Xu, B.; Li, C.; Zhang, Z.; Tong, S.; Zhong, L.; et al. Prognostic value of interleukin-6 in atrial fibrillation: A cohort study and meta-analysis. Anatol. J. Cardiol. 2021, 25, 872–879. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, S.; Yang, S.; Lu, Y.; Lu, K.; Wu, Y.; Wu, Q.; Zhao, N.; Dong, Q.; Chen, L.; et al. Interleukin-6-Mediated-Ca2+ Handling Abnormalities Contributes to Atrial Fibrillation in Sterile Pericarditis Rats. Front. Immunol. 2021, 12, 758157. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, H.; Liao, J.; Zhao, N.; Tse, G.; Han, B.; Chen, L.; Huang, Z.; Du, Y. Colchicine prevents atrial fibrillation promotion by inhibiting IL-1β-induced IL-6 release and atrial fibrosis in the rat sterile pericarditis model. Biomed. Pharmacother. 2020, 129, 110384. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, X.; Chen, X.; Peng, S.; Chen, S.; Zhou, G.; Wei, Y.; Lu, X.; Zhou, C.; Ye, Y.; et al. Selective blockade of interleukin 6 trans-signaling depresses atrial fibrillation. Heart Rhythm. 2023, 20, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.F.; Dong, Q.; Du, Y.M. Interleukin-6: Molecular Mechanisms and Therapeutic Perspectives in Atrial Fibrillation. Curr. Med. Sci. 2025, 45, 157–168. [Google Scholar] [CrossRef]
- Meléndez, G.C.; McLarty, J.L.; Levick, S.P.; Du, Y.; Janicki, J.S.; Brower, G.L. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 2010, 56, 225–231. [Google Scholar] [CrossRef]
- Mir, S.A.; Chatterjee, A.; Mitra, A.; Pathak, K.; Mahata, S.K.; Sarkar, S. Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. J. Biol. Chem. 2012, 287, 2666–2677. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, X.J.; Qian, C.; Dong, Q.; Ding, D.; Wu, Q.F.; Li, J.; Wang, H.F.; Li, W.H.; Xie, Q.; et al. Signal Transducer and Activator of Transcription 3/MicroRNA-21 Feedback Loop Contributes to Atrial Fibrillation by Promoting Atrial Fibrosis in a Rat Sterile Pericarditis Model. Circ. Arrhythmia Electrophysiol. 2016, 9, e003396. [Google Scholar] [CrossRef]
- Hulsmans, M.; Schloss, M.J.; Lee, I.-H.; Bapat, A.; Iwamoto, Y.; Vinegoni, C.; Paccalet, A.; Yamazoe, M.; Grune, J.; Pabel, S.; et al. Recruited macrophages elicit atrial fibrillation. Science 2023, 381, 231–239. [Google Scholar] [CrossRef]
- Ren, M.; Li, X.; Hao, L.; Zhong, J. Role of tumor necrosis factor alpha in the pathogenesis of atrial fibrillation: A novel potential therapeutic target? Ann. Med. 2015, 47, 316–324. [Google Scholar] [CrossRef]
- Pinto, A.; Tuttolomondo, A.; Casuccio, A.; Di Raimondo, D.; Di Sciacca, R.; Arnao, V.; Licata, G. Immuno-inflammatory predictors of stroke at follow-up in patients with chronic non-valvular atrial fibrillation (NVAF). Clin. Sci. 2009, 116, 781–789. [Google Scholar] [CrossRef]
- Corradi, D.; Callegari, S.; Manotti, L.; Ferrara, D.; Goldoni, M.; Alinovi, R.; Pinelli, S.; Mozzoni, P.; Andreoli, R.; Asimaki, A.; et al. Persistent lone atrial fibrillation: Clinicopathologic study of 19 cases. Heart Rhythm. 2014, 11, 1250–1258. [Google Scholar] [CrossRef]
- Liew, R.; Khairunnisa, K.; Gu, Y.; Tee, N.; Yin, N.O.; Naylynn, T.M.; Moe, K.T. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ. J. 2013, 77, 1171–1179. [Google Scholar] [CrossRef]
- Dirienzo, L.; Vitulli, A.; Mancazzo, F.; Ammollo, C.T.; Dellanoce, C.; Paoletti, O.; Testa, S.; Colucci, M. Differential effect of direct oral anticoagulants on thrombin generation and fibrinolysis in patients with atrial fibrillation and venous thromboembolism. Blood Transfus. 2022, 20, 505–515. [Google Scholar]
- Li-Saw-Hee, F.L.; Blann, A.D.; Lip, G.Y. Effects of fixed low-dose warfarin, aspirin-warfarin combination therapy, and dose-adjusted warfarin on thrombogenesis in chronic atrial fibrillation. Stroke 2000, 31, 828–833. [Google Scholar] [CrossRef]
- Alfano, F.; Cesari, F.; Gori, A.M.; Berteotti, M.; Salvadori, E.; Giusti, B.; Bertelli, A.; Fratini, F.; Rogolino, A.; Formelli, B.; et al. Markers of Inflammation and Hypofibrinolysis Are Associated with Cognitive Dysfunction and Motor Performances in Atrial Fibrillation Patients on Oral Anticoagulant Therapy: Insights from the Strat-AF Study. Biomedicines 2025, 13, 941. [Google Scholar] [CrossRef]
- Roldán, V.; Marín, F.; Marco, P.; Martínez, J.G.; Calatayud, R.; Sogorb, F. Hypofibrinolysis in atrial fibrillation. Am. Heart J. 1998, 136, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, B.; Wu, N.; Xiang, Y.; Wu, L.; Zhang, M.; Wang, J.; Chen, X.; Li, Y.; Zhong, L. Association of MMPs and TIMPs With the Occurrence of Atrial Fibrillation: A Systematic Review and Meta-analysis. Can. J. Cardiol. 2016, 32, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, H.T.; Yang, X.L. Effect of matrix metalloproteinase and their inhibitors on atrial myocardial structural remodeling. J. Cardiovasc. Med. 2013, 14, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.L.; Duarte, R.C.F.; Vieira, É.L.M.; Rocha, N.P.; Figueiredo, E.L.; Silveira, F.R.; Caiaffa, J.R.S.; Lanna, R.P.; Carvalho, M.D.G.; Palotás, A.; et al. Comparison of Inflammatory Mediators in Patients with Atrial Fibrillation Using Warfarin or Rivaroxaban. Front. Cardiovasc. Med. 2020, 7, 114. [Google Scholar] [CrossRef]
- Lavalle, C.; Pierucci, N.; Mariani, M.V.; Piro, A.; Borrelli, A.; Grimaldi, M.; Rossillo, A.; Notarstefano, P.; Compagnucci, P.; Dello Russo, A.; et al. Italian Registry in the Setting of Atrial Fibrillation Ablation with Rivaroxaban—IRIS. Minerva Cardiol. Angiol. 2024, 72, 625–637. [Google Scholar] [CrossRef]
- Hu, T.; Su, P.; Yang, F.; Ying, J.; Chen, Y.; Cui, H. Circulating Cytokines and Venous Thromboembolism: A Bidirectional Two-Sample Mendelian Randomization Study. Thromb. Haemost. 2024, 124, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Minami, T.; Sugiyama, A.; Wu, S.Q.; Abid, R.; Kodama, T.; Aird, W.C. Thrombin and phenotypic modulation of the endothelium. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Dorling, A. The roles of thrombin and protease-activated receptors in inflammation. Semin. Immunopathol. 2012, 34, 63–72. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Xiong, S.; Zhang, H.; Suo, R.; Zhang, X.; Liu, D.; Fu, H.; Liu, T.; Li, G. Neutrophil Extracellular Traps: Potential Prothrombotic State Markers and Therapeutic Targets for Atrial Fibrillation. Thromb. Haemost. 2024, 124, 441–454. [Google Scholar] [CrossRef]
- Martinod, K.; Claessen, A.; Martens, C.; Krauel, K.; Velásquez Pereira, L.C.; Witsch, J.; Witsch, T. NET burden in left atrial blood is associated with biomarkers of thrombosis and cardiac injury in patients with enlarged left atria. Clin. Res. Cardiol. 2025, 114, 112–125. [Google Scholar] [CrossRef]
- Geng, X.; Wang, D.W.; Li, H. The pivotal role of neutrophil extracellular traps in cardiovascular diseases: Mechanisms and therapeutic implications. Biomed. Pharmacother. 2024, 179, 117289. [Google Scholar] [CrossRef]
- von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef] [PubMed]
Demographic and Clinical Characteristics | Total Cohort n = 170 |
---|---|
Age [yrs], (mean ± SD) | 77.7 ± 6.8 |
Female sex, n (%) | 59 (34.7%) |
Schooling [yrs], (mean ± SD) | 9.1 ± 4.3 |
Stroke, n (%) | 38 (22.4%) |
Coronary artery disease, n (%) | 18 (10.6%) |
Heart failure, n (%) | 25 (14.7%) |
Peripheral arterial disease, n (%) | 14 (8%) |
Hypertension, n (%) | 140 (82.4%) |
Diabetes, n (%) | 22 (12.9%) |
Dyslipidemia, n (%) | 87 (51.2%) |
Physical activity (lack of), n (%) | 110 (64.7%) |
Smoking habit [current or former(within 10 yrs)], n (%) | 105 (61.8%) |
Alcohol consumption, n (%) | 91 (53.5%) |
BMI [kg/m2], (mean ± SD) | 26.3 ± 3.9 |
CHA2DS2-VASc Score (mean ± SD) | 3.69 ± 1.49 |
HAS-BLED (mean ± SD) | 1.85 ± 0.89 |
Total Cohort (n = 170) | DOACs (n = 118) | VKAs (n = 52) | p | |
---|---|---|---|---|
Age [yrs], (mean ± SD) | 77.7 ± 6.8 | 77.5 ± 3.9 | 78.2 ± 6.4 | 0.512 |
Sex (M/F), n (%) | 111/59 | 70 (59.3)/48 (40.7) | 41 (78.8)/11 (21.2) | 0.015 |
BMI [kg/m2], (mean ± SD) | 26.3 ± 3.9 | 26.1 ± 3.9 | 26.9 ± 3.8 | 0.974 |
Schooling [yrs], (mean ± SD) | 9.1 ± 4.3 | 9.3 ± 4.4 | 9.6 ± 4.3 | 0.417 |
Hypertension, n (%) | 140 (82.4) | 99 (83.9) | 41 (78.8) | 0.513 |
Diabetes, n (%) | 22 (12.9) | 13 (11.0) | 9 (17.3) | 0.321 |
Dyslipidemia, n (%) | 87 (51.2) | 55 (46.6) | 32 (61.5) | 0.096 |
Smoking habits, n (%) | 105 (61.8) | 70 (59.3) | 35 (67.3) | 0.393 |
Physical activity (lack of), n (%) | 110 (64.7) | 75 (63.6) | 35 (67.3) | 0.728 |
Alcohol consumption, n (%) | 91 (53.5%) | 57 (48.3) | 34 (65.4) | 0.046 |
Stroking habit, n (%) | 38 (22.4) | 27 (22.9) | 11 (21.1) | 0.845 |
Coronary artery disease, n (%) | 18 (10.6) | 11 (9.3) | 7 (13.5) | 0.427 |
Heart failure, n (%) | 25 (14.7) | 9 (7.6) | 16 (30.8) | <0.001 |
Peripheral arterial disease, n (%) | 14 (8) | 6 (5.1) | 8 (15.4) | 0.034 |
CHA2DS2-VASc (mean ± SD) | 3.7 ± 1.5 | 3.7 ± 1.4 | 3.8 ± 1.5 | 0.704 |
HAS-BLED (mean ± SD) | 1.9 ± 0.9 | 1.6 ± 0.7 | 2.1 ± 1.0 | 0.012 |
Aspirin use, n (%) | 48 (28.2) | 43 (36.8) | 5 (9.6) | <0.001 |
Statin use, n (%) | 58 (34.1) | 35 (29.7) | 23 (44.2) | 0.080 |
Biological Markes | Type of OAC | ||
---|---|---|---|
DOACs (n = 118) | VKAs (n = 52) | p | |
IL-4 [pg/mL], median (IQR) | 12.81 (5.00–35.92) | 6.50 (6.00–15.54) | 0.067 |
IL-6 [pg/mL], median (IQR) | 1.98 (1.42–3.58) | 0.38 (0.30–1.21) | <0.001 |
IL-8 [pg/mL], median (IQR) | 8.18 (4.70–12.10) | 9.44 (5.77–14.32) | 0.180 |
IL-10 [pg/mL], median (IQR) | 3.29 (1.09–3.56) | 1.45 (0.24–3.46) | 0.003 |
TNFα [pg/mL], median (IQR) | 2.95 (1.51–5.00) | 1.53 (0.59–2.28) | <0.001 |
CCL-2 [pg/mL], median (IQR) | 328.79 (230.65–465.40) | 309.78 (228.15–380.14) | 0.153 |
CXCL-10 [pg/mL], median (IQR) | 13.29 (9.85–20.54) | 16.65 (12.00–25.44) | 0.043 |
ICAM-1 [ng/mL], median (IQR) | 343.62 (273.42–601.88) | 297.46 (247.84–385.63) | 0.023 |
VCAM-1 [ng/mL], median (IQR) | 1532.00 (1032.08–2148.13) | 1205.00 (971.11–1830.00) | 0.036 |
VEGF [pg/mL], median (IQR) | 66.03 (37.46–112.81) | 61.21 (35.24–85.75) | 0.454 |
PAI-1 [ng/mL], median (IQR) | 8.64 (6.83–12.53) | 11.33 (7.83–18.32) | 0.020 |
vWF [%], median (IQR) | 152.50 (122.20–211.70) | 178.50 (139.20–205.90) | 0.169 |
Peak [nM], median (IQR) | 90.50 (29.80–231.15) | 60.65 (37.25–146.40) | 0.233 |
Time to peak [min], median (IQR) | 14.00 (8.70–20.70) | 10.80 (5.45–15.60) | 0.014 |
ETP TM- [nM/min], median (IQR) | 687.00 (243.00–1835.40) | 387.25 (291.38–752.88) | 0.066 |
ETP TM + [nM/min], median (IQR) | 1242.00 (538.00–2417.40) | 448.45 (322.83–850.20) | <0.001 |
ETP ratio [ratio], median (IQR) | 0.65 (0.41–0.90) | 0.87 (0.68–1.01) | <0.001 |
Clot lysis time [min], median (IQR) | 53.82 (44.56–72.14) | 50.24 (40.76–59.04) | 0.088 |
EMMPRIN [ng/mL], median (IQR) | 5.44 (3.84–6.88) | 5.54 (4.12–6.91) | 0.870 |
MMP-2 [ng/mL], median (IQR) | 521.51 (438.74–640.58) | 496.31 (415.28–628.78) | 0.260 |
MMP-7 [ng/mL], median (IQR) | 4.15 (2.35–5.71) | 6.90 (6.19–7.93) | <0.001 |
MMP-8 [ng/mL], median (IQR) | 7.07 (3.43–14.61) | 8.32 (4.28–13.66) | 0.538 |
MMP-9 [ng/mL], median (IQR) | 319.50 (195.74–513.62) | 269.25 (176.34–412.66) | 0.138 |
MMP-12 [ng/mL], median (IQR) | 450.10 (309.12–612.28) | 79.35 (45.01–93.91) | <0.001 |
TIMP-1 [ng/mL], median (IQR) | 162.20 (131.25–201.62) | 164.24 (135.69–238.15) | 0.690 |
TIMP-2 [ng/mL], median (IQR) | 126.78 (99.12–161.87) | 140.62 (98.01–220.67) | 0.363 |
TIMP-3 [ng/mL], median (IQR) | 33.34 (22.96–49.24) | 46.11 (29.81–67.17) | 0.007 |
TIMP-4 [ng/mL], median (IQR) | 3.08 (2.36–4.25) | 3.14 (2.14–5.67) | 0.874 |
Univariate Analysis | p | Multivariate Analysis OR (95% CI) | p | |
---|---|---|---|---|
OR (95% CI) | ||||
Age (yrs) | ||||
Balance | 1.02 (0.96–1.08) | 0.477 | ||
High grade | 1.02 (0.96–1.09) | 0.551 | ||
Sex, F vs. M | ||||
Balance | 0.79 (0.34–1.81) | 0.572 | ||
High grade | 1.23 (0.52–2.93) | 0.634 | ||
BMI [kg/m2] | ||||
Balance | 0.95 (0.86–1.05) | 0.311 | ||
High grade | 0.97 (0.87–1.08) | 0.574 | ||
Schooling [yrs] | ||||
Balance | 1.13 (1.02–1.25) | 0.020 | ||
High grade | 1.09 (0.98–1.21) | 0.107 | ||
Hypertension | ||||
Balance | 0.36 (0.11–1.15) | 0.086 | 0.41 (0.13–1.33) | 0.136 |
High grade | 1.04 (0.27–3.98) | 0.952 | 1.10 (0.28–4.34) | 0.897 |
Diabetes | ||||
Balance | 1.18 (0.34–4.04) | 0.796 | ||
High grade | 1.33 (0.37–4.80) | 0.660 | ||
Dyslipidemia | ||||
Balance | 0.55 (0.25–1.23) | 0.145 | ||
High grade | 0.95 (0.41–2.22) | 0.910 | ||
Smoking habit | ||||
Balance | 1.36 (0.61–3.00) | 0.453 | ||
High grade | 2.05 (0.86–4.89) | 0.104 | ||
Physical activity (lack of) | ||||
Balance | 0.83 (0.36–1.942) | 0.669 | ||
High grade | 0.68 (0.28–1.65) | 0.395 | ||
Alcohol consumption | ||||
Balance | 1.34 (0.61–3.00) | 0.453 | ||
High grade | 0.72 (0.31–1.67) | 0.722 | ||
Stroke | ||||
Balance | 0.50 (0.20–1.24) | 0.134 | ||
High grade | 0.69 (0.27–1.76) | 0.453 | ||
Coronary artery disease | ||||
Balance | 1.26 (0.31–5.05) | 0.104 | ||
High grade | 1.57 (0.38–6.52) | 0.388 | ||
Heart failure | ||||
Balance | 0.54 (0.18–1.59) | 0.263 | ||
High grade | 0.79 (0.27–2.36) | 0.677 | ||
Peripheral arterial disease | ||||
Balance | 1.28 (0.31–5.05) | 0.747 | ||
High grade | 0.62 (0.12–3.27) | 0.575 | ||
CHA2DS2-VASc | ||||
Balance | 0.82 (0.63–1.07) | 0.149 | ||
High grade | 0.96 (0.73–1.26) | 0.766 | ||
HAS-BLED | ||||
Balance | 0.79 (0.50–1.25) | 0.321 | ||
High grade | 0.83 (0.51–1.35) | 0.453 | ||
Type of OAC (VKAs vs. DOACs) | ||||
Balance | 0.78 (0.35–1.76) | 0.069 | 0.73 (0.32–1.67) | 0.453 |
High grade | 0.27 (0.10–0.71) | 0.008 | 0.26 (0.10–0.69) | 0.007 |
Aspirin use | ||||
Balance | 0.63 (0.26–1.54) | 0.314 | ||
High grade | 1.29 (0.53–3.19) | 0.568 | ||
Statin use | ||||
Balance | 0.52 (0.23–1.19) | 0.118 | ||
High grade | 0.91 (0.39–2.12) | 0.820 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfano, F.; Gori, A.M.; Berteotti, M.; Rogolino, A.; Cesari, F.; Salvadori, E.; Formelli, B.; Pescini, F.; Barbato, C.; Giusti, B.; et al. Pleiotropic Effects of Oral Anticoagulant Therapy: Is There a Difference Between VKAs and DOACs? Biomedicines 2025, 13, 1850. https://doi.org/10.3390/biomedicines13081850
Alfano F, Gori AM, Berteotti M, Rogolino A, Cesari F, Salvadori E, Formelli B, Pescini F, Barbato C, Giusti B, et al. Pleiotropic Effects of Oral Anticoagulant Therapy: Is There a Difference Between VKAs and DOACs? Biomedicines. 2025; 13(8):1850. https://doi.org/10.3390/biomedicines13081850
Chicago/Turabian StyleAlfano, Francesco, Anna Maria Gori, Martina Berteotti, Angela Rogolino, Francesca Cesari, Emilia Salvadori, Benedetta Formelli, Francesca Pescini, Carmen Barbato, Betti Giusti, and et al. 2025. "Pleiotropic Effects of Oral Anticoagulant Therapy: Is There a Difference Between VKAs and DOACs?" Biomedicines 13, no. 8: 1850. https://doi.org/10.3390/biomedicines13081850
APA StyleAlfano, F., Gori, A. M., Berteotti, M., Rogolino, A., Cesari, F., Salvadori, E., Formelli, B., Pescini, F., Barbato, C., Giusti, B., Poggesi, A., & Marcucci, R. (2025). Pleiotropic Effects of Oral Anticoagulant Therapy: Is There a Difference Between VKAs and DOACs? Biomedicines, 13(8), 1850. https://doi.org/10.3390/biomedicines13081850