Hydrocephalus: Molecular and Neuroimaging Biomarkers in Diagnosis and Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Analysis
3. Molecular Markers
3.1. Ciliogenesis-Related Genetic Biomarkers
3.2. Aquaporins
3.3. Cytokines, Signaling Pathways, and Neuroinflammatoy Mediators
3.4. Matrix Metalloproteinases
3.5. Vascular Endothelial Growth Factor
3.6. Neurofilaments
3.7. Glial Fibrillary Acidic Protein
3.8. Proteomic Markers
4. Neuroimaging Techniques and Markers
4.1. Classic Structural MRI and CT
4.2. Machine Learning and Artificial Intelligence
4.3. Functional and Nuclear Imaging
4.4. Advanced MRI Techniques
4.5. Glympathic MRI
5. Limitations and Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, R.D.; Fisher, C.M.; Hakim, S.; Ojemann, R.G.; Sweet, W.H. Symptomatic Occult Hydrocephalus with Normal Cerebrospinal-Fluid Pressure: A Treatable Syndrome. N. Engl. J. Med. 1965, 273, 117–126. [Google Scholar] [CrossRef]
- Hochstetler, A.; Raskin, J.; Blazer-Yost, B.L. Hydrocephalus: Historical Analysis and Considerations for Treatment. Eur. J. Med. Res. 2022, 27, 168. [Google Scholar] [CrossRef]
- Dandy, W.E. Experimental Hydrocephalus. Ann. Surg. 1919, 70, 129–142. [Google Scholar] [CrossRef]
- Kahle, K.T.; Kulkarni, A.V.; Limbrick, D.D.; Warf, B.C. Hydrocephalus in Children. Lancet 2016, 387, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Rekate, H.L. A Consensus on the Classification of Hydrocephalus: Its Utility in the Assessment of Abnormalities of Cerebrospinal Fluid Dynamics. Childs Nerv. Syst. 2011, 27, 1535–1541. [Google Scholar] [CrossRef]
- Oi, S. Classification of Hydrocephalus: Critical Analysis of Classification Categories and Advantages of “Multi-Categorical Hydrocephalus Classification” (Mc HC). Childs Nerv. Syst. 2011, 27, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.S. Hydrocephalus. Res. Publ.-Assoc. Res. Nerv. Ment. Dis. 1955, 34, 160–175. [Google Scholar] [PubMed]
- Di Rocco, C.; Pettorossi, V.E.; Caldarelli, M.; Mancinelli, R.; Velardi, F. Experimental Hydrocephalus Following Mechanical Increment of Intraventricular Pulse Pressure. Experientia 1977, 33, 1470–1472. [Google Scholar] [CrossRef]
- Thomale, U.W. Integrated Understanding of Hydrocephalus—A Practical Approach for a Complex Disease. Childs Nerv. Syst. 2021, 37, 3313–3324. [Google Scholar] [CrossRef]
- Deepak, G.; Raghav, S.; Chinmay, D. Pathophysiology of Hydrocephalus; Springer International Publishing: Cham, Switzerland, 2017; pp. 35–52. ISBN 978-3-319-61303-1. [Google Scholar]
- Eymann, R. Klinische Symptome des Hydrozephalus. Radiol. 2012, 52, 807–812. [Google Scholar] [CrossRef]
- Chaudhry, S.; Stoffel-Wagner, B.; Kinfe, T.; Güresir, E.; Vatter, H.; Dietrich, D.; Lamprecht, A.; Muhammad, S. Elevated Systemic IL-6 Levels in Patients with Aneurysmal Subarachnoid Hemorrhage Is an Unspecific Marker for Post-SAH Complications. Int. J. Mol. Sci. 2017, 18, 2580. [Google Scholar] [CrossRef]
- Lolansen, S.D.; Rostgaard, N.; Oernbo, E.K.; Juhler, M.; Simonsen, A.H.; MacAulay, N. Inflammatory Markers in Cerebrospinal Fluid from Patients with Hydrocephalus: A Systematic Literature Review. Dis. Markers 2021, 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ulfig, N.; Bohl, J.; Neudörfer, F.; Rezaie, P. Brain Macrophages and Microglia in Human Fetal Hydrocephalus. Brain Dev. 2004, 26, 307–315. [Google Scholar] [CrossRef]
- Gu, C.; Hao, X.; Li, J.; Hua, Y.; Keep, R.F.; Xi, G. Effects of Minocycline on Epiplexus Macrophage Activation, Choroid Plexus Injury and Hydrocephalus Development in Spontaneous Hypertensive Rats. J. Cereb. Blood Flow Metab. 2019, 39, 1936–1948. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Guo, J.; Yu, C.; Yang, J. Molecular Mechanisms and Risk Factors for the Pathogenesis of Hydrocephalus. Front. Genet. 2022, 12, 777926. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Tan, C.; Wang, Y.; Tang, Z.; Zhang, Z.; Liu, J.; Xiao, G. Novel Therapeutics for Hydrocephalus: Insights from Animal Models. CNS Neurosci. Ther. 2021, 27, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Hochstetler, A.; Hehnly, C.; Dawes, W.; Harris, D.; Sadegh, C.; Mangano, F.T.; Lanjewar, S.N.; Chau, M.J. Research Priorities for Non-Invasive Therapies to Improve Hydrocephalus Outcomes. Fluids Barriers CNS 2025, 22, 24. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Tang, Z.; Chen, Y.; Wang, C.; Tan, C.; Liao, J.; Tong, L.; Xiao, G. Ependymal Cilia: Physiology and Role in Hydrocephalus. Front. Mol. Neurosci. 2022, 15, 927479. [Google Scholar] [CrossRef]
- Jacquet, B.V.; Salinas-Mondragon, R.; Liang, H.; Therit, B.; Buie, J.D.; Dykstra, M.; Campbell, K.; Ostrowski, L.E.; Brody, S.L.; Ghashghaei, H.T. FoxJ1-Dependent Gene Expression Is Required for Differentiation of Radial Glia into Ependymal Cells and a Subset of Astrocytes in the Postnatal Brain. Development 2009, 136, 4021–4031. [Google Scholar] [CrossRef]
- Lewis, M.; Stracker, T.H. Transcriptional Regulation of Multiciliated Cell Differentiation. Semin. Cell Dev. Biol. 2021, 110, 51–60. [Google Scholar] [CrossRef]
- Omiya, H.; Yamaguchi, S.; Watanabe, T.; Kuniya, T.; Harada, Y.; Kawaguchi, D.; Gotoh, Y. BMP Signaling Suppresses Gemc1 Expression and Ependymal Differentiation of Mouse Telencephalic Progenitors. Sci. Rep. 2021, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Wallmeier, J.; Al-Mutairi, D.A.; Chen, C.-T.; Loges, N.T.; Pennekamp, P.; Menchen, T.; Ma, L.; Shamseldin, H.E.; Olbrich, H.; Dougherty, G.W.; et al. Mutations in CCNO Result in Congenital Mucociliary Clearance Disorder with Reduced Generation of Multiple Motile Cilia. Nat. Genet. 2014, 46, 646–651. [Google Scholar] [CrossRef]
- Liu, P.; Choi, Y.-K.; Qi, R.Z. NME7 Is a Functional Component of the γ-Tubulin Ring Complex. Mol. Biol. Cell 2014, 25, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Keryer, G.; Pineda, J.R.; Liot, G.; Kim, J.; Dietrich, P.; Benstaali, C.; Smith, K.; Cordelières, F.P.; Spassky, N.; Ferrante, R.J.; et al. Ciliogenesis Is Regulated by a Huntingtin-HAP1-PCM1 Pathway and Is Altered in Huntington Disease. J. Clin. Invest. 2011, 121, 4372–4382. [Google Scholar] [CrossRef]
- Kunimoto, K.; Yamazaki, Y.; Nishida, T.; Shinohara, K.; Ishikawa, H.; Hasegawa, T.; Okanoue, T.; Hamada, H.; Noda, T.; Tamura, A.; et al. Coordinated Ciliary Beating Requires Odf2-Mediated Polarization of Basal Bodies via Basal Feet. Cell 2012, 148, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, M.-M.; Yell, P.; Mobley, B.C.; Shang, P.; Georgescu, T.; Wang, S.-H.J.; Canoll, P.; Hatanpaa, K.J.; White Iii, C.L.; Raisanen, J.M. NHERF1/EBP50 Is an Organizer of Polarity Structures and a Diagnostic Marker in Ependymoma. Acta Neuropathol. Commun. 2015, 3, 11. [Google Scholar] [CrossRef]
- Inaba, Y.; Shinohara, K.; Botilde, Y.; Nabeshima, R.; Takaoka, K.; Ajima, R.; Lamri, L.; Takeda, H.; Saga, Y.; Nakamura, T.; et al. Transport of the Outer Dynein Arm Complex to Cilia Requires a Cytoplasmic Protein Lrrc6. Genes Cells 2016, 21, 728–739. [Google Scholar] [CrossRef]
- Chiani, F.; Orsini, T.; Gambadoro, A.; Pasquini, M.; Putti, S.; Cirilli, M.; Ermakova, O.; Tocchini-Valentini, G.P. Functional Loss of Ccdc1 51 Leads to Hydrocephalus in a Mouse Model of Primary Ciliary Dyskinesia. Dis. Model. Mech. 2019, 12, dmm038489. [Google Scholar] [CrossRef]
- Zariwala, M.; O’Neal, W.K.; Noone, P.G.; Leigh, M.W.; Knowles, M.R.; Ostrowski, L.E. Investigation of the Possible Role of a Novel Gene, DPCD, in Primary Ciliary Dyskinesia. Am. J. Respir. Cell Mol. Biol. 2004, 30, 428–434. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Watanabe, M.; Okada, Y.; Sawa, H.; Takai, H.; Nakanishi, M.; Kawase, Y.; Suzuki, H.; Nagashima, K.; Ikeda, K.; et al. Hydrocephalus, Situs Inversus, Chronic Sinusitis, and Male Infertility in DNA Polymerase λ-Deficient Mice: Possible Implication for the Pathogenesis of Immotile Cilia Syndrome. Mol. Cell. Biol. 2002, 22, 2769–2776. [Google Scholar] [CrossRef]
- Appelbe, O.K.; Bollman, B.; Attarwala, A.; Triebes, L.A.; Muniz-Talavera, H.; Curry, D.J.; Schmidt, J.V. Disruption of the Mouse Jhy Gene Causes Abnormal Ciliary Microtubule Patterning and Juvenile Hydrocephalus. Dev. Biol. 2013, 382, 172–185. [Google Scholar] [CrossRef]
- Oshio, K.; Watanabe, H.; Song, Y.; Verkman, A.S.; Manley, G.T. Reduced Cerebrospinal Fluid Production and Intracranial Pressure in Mice Lacking Choroid Plexus Water Channel Aquaporin-1. FASEB J. 2005, 19, 76–78. [Google Scholar] [CrossRef]
- Igarashi, H.; Tsujita, M.; Kwee, I.L.; Nakada, T. Water Influx into Cerebrospinal Fluid Is Primarily Controlled by Aquaporin-4, Not by Aquaporin-1: 17O JJVCPE MRI Study in Knockout Mice. NeuroReport 2014, 25, 39–43. [Google Scholar] [CrossRef]
- Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The Glymphatic System: A Beginner’s Guide. Neurochem. Res. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [PubMed]
- Trillo-Contreras, J.L.; Toledo-Aral, J.J.; Echevarría, M.; Villadiego, J. AQP1 and AQP4 Contribution to Cerebrospinal Fluid Homeostasis. Cells 2019, 8, 197. [Google Scholar] [CrossRef]
- Mao, X.; Enno, T.L.; Del Bigio, M.R. Aquaporin 4 Changes in Rat Brain with Severe Hydrocephalus. Eur. J. Neurosci. 2006, 23, 2929–2936. [Google Scholar] [CrossRef] [PubMed]
- Bloch, O.; Auguste, K.I.; Manley, G.T.; Verkman, A. Accelerated Progression of Kaolin-Induced Hydrocephalus in Aquaporin-4-Deficient Mice. J. Cereb. Blood Flow Metab. 2006, 26, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Filippidis, A.S.; Kalani, M.Y.S.; Rekate, H.L. Hydrocephalus and Aquaporins: The Role of Aquaporin-4. In Hydrocephalus; Aygok, G.A., Rekate, H.L., Eds.; Acta Neurochirurgica Supplementum; Springer Vienna: Vienna, 2012; Volume 113, pp. 55–58. ISBN 978-3-7091-0922-9. [Google Scholar]
- Owler, B.K.; Pitham, T.; Wang, D. Aquaporins: Relevance to Cerebrospinal Fluid Physiology and Therapeutic Potential in Hydrocephalus. Cerebrospinal Fluid Res. 2010, 7, 15. [Google Scholar] [CrossRef]
- Wang, D.; Nykanen, M.; Yang, N.; Winlaw, D.; North, K.; Verkman, A.S.; Owler, B.K. Altered Cellular Localization of Aquaporin-1 in Experimental Hydrocephalus in Mice and Reduced Ventriculomegaly in Aquaporin-1 Deficiency. Mol. Cell. Neurosci. 2011, 46, 318–324. [Google Scholar] [CrossRef]
- Bloch, O.; Manley, G.T. The Role of Aquaporin-4 in Cerebral Water Transport and Edema. Neurosurg. Focus 2007, 22, 1–7. [Google Scholar] [CrossRef]
- Kusumo, C.; Parenrengi, M.A.; Suryaningtyas, W.; Fahmi, A.; Utomo, B.; Sudiana, I.K. Aquaporin-9 as a Biomarker for Hydrocephalus: Insights from Experimental Rat Models. Surg. Neurol. Int. 2025, 16, 58. [Google Scholar] [CrossRef]
- Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β Signal Transduction for Fibrosis and Cancer Therapy. Mol. Cancer 2022, 21, 104. [Google Scholar] [CrossRef]
- Tzavlaki, K.; Moustakas, A. TGF-β Signaling. Biomolecules 2020, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Ming, X.; Ye, Z.; Wang, P.; Wang, L.; Li, Z.; Pan, B. Icariside II Attenuates Chronic Hydrocephalus in an Experimental Subarachnoid Hemorrhage Rat Model. J. Pharm. Pharm. Sci. 2018, 21, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Chen, Y.; Li, L.; Jiang, J.; Wu, G.; Zuo, Y.; Zhang, J.H.; Feng, H.; Yan, X.; Liu, F. Decorin Alleviated Chronic Hydrocephalus via Inhibiting TGF-Β1/Smad/CTGF Pathway after Subarachnoid Hemorrhage in Rats. Brain Res. 2016, 1630, 241–253. [Google Scholar] [CrossRef]
- Liao, F.; Li, G.; Yuan, W.; Chen, Y.; Zuo, Y.; Rashid, K.; Zhang, J.H.; Feng, H.; Liu, F. LSKL Peptide Alleviates Subarachnoid Fibrosis and Hydrocephalus by Inhibiting TSP1-Mediated TGF-Β1 Signaling Activity Following Subarachnoid Hemorrhage in Rats. Exp. Ther. Med. 2016, 12, 2537–2543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ge, Y.; Cheng, Q.; Zhang, Q.; Fang, L.; Zheng, J. Decorin Is a Pivotal Effector in the Extracellular Matrix and Tumour Microenvironment. Oncotarget 2018, 9, 5480–5491. [Google Scholar] [CrossRef]
- Deng, X.; Chen, Y.; Duan, Q.; Ding, J.; Wang, Z.; Wang, J.; Chen, X.; Zhou, L.; Zhao, L. Genetic and Molecular Mechanisms of Hydrocephalus. Front. Mol. Neurosci. 2025, 17, 1512455. [Google Scholar] [CrossRef]
- Lin, T.; Ding, L.; Lin, Y.; Liu, C.; Wang, C.; Wu, D.; Li, Z.; Li, M.; Sun, J. Pharmacological Inhibition of TLR4-NF-κB Signaling by TAK-242 Attenuates Hydrocephalus after Intraventricular Hemorrhage. Int. Immunopharmacol. 2022, 103, 108486. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, C.; Li, G.; Gao, W.; Tang, H.; Fan, S.; Tang, X.; Zhao, L.; Wang, H.; Peng, A.; et al. Metformin Alleviates Delayed Hydrocephalus after Intraventricular Hemorrhage by Inhibiting Inflammation and Fibrosis. Transl. Stroke Res. 2023, 14, 364–382. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Li, Y.; Zhang, H.; Qi, X.; Wu, K.; Zhang, Y.; You, S.; Liu, W.; Hui, X.; et al. Choroid Plexus CCL2-CCR2 Signaling Orchestrates Macrophage Recruitment and Cerebrospinal Fluid Hypersecretion in Hydrocephalus. Acta Pharm. Sin. B 2024, 14, 4544–4559. [Google Scholar] [CrossRef] [PubMed]
- Lattke, M.; Magnutzki, A.; Walther, P.; Wirth, T.; Baumann, B. Nuclear Factor κB Activation Impairs Ependymal Ciliogenesis and Links Neuroinflammation to Hydrocephalus Formation. J. Neurosci. 2012, 32, 11511–11523. [Google Scholar] [CrossRef] [PubMed]
- Karimy, J.K.; Zhang, J.; Kurland, D.B.; Theriault, B.C.; Duran, D.; Stokum, J.A.; Furey, C.G.; Zhou, X.; Mansuri, M.S.; Montejo, J.; et al. Inflammation-Dependent Cerebrospinal Fluid Hypersecretion by the Choroid Plexus Epithelium in Posthemorrhagic Hydrocephalus. Nat. Med. 2017, 23, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Acuner Ozbabacan, S.E.; Gursoy, A.; Nussinov, R.; Keskin, O. The Structural Pathway of Interleukin 1 (IL-1) Initiated Signaling Reveals Mechanisms of Oncogenic Mutations and SNPs in Inflammation and Cancer. PLoS Comput. Biol. 2014, 10, e1003470. [Google Scholar] [CrossRef]
- Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The Role of Interleukin-6 Signaling in Nervous Tissue. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2016, 1863, 1218–1227. [Google Scholar] [CrossRef]
- Hallaert, G.G.; Vanhauwaert, D.J.; Logghe, K.; Van Den Broecke, C.; Baert, E.; Van Roost, D.; Caemaert, J. Endoscopic Coagulation of Choroid Plexus Hyperplasia: Case Report. J. Neurosurg. Pediatr. 2012, 9, 169–177. [Google Scholar] [CrossRef]
- Tu, J.; Fang, Y.; Han, D.; Tan, X.; Jiang, H.; Gong, X.; Wang, X.; Hong, W.; Wei, W. Activation of Nuclear factor-κB in the Angiogenesis of Glioma: Insights into the Associated Molecular Mechanisms and Targeted Therapies. Cell Prolif. 2021, 54, e12929. [Google Scholar] [CrossRef]
- Rex, D.A.B.; Agarwal, N.; Prasad, T.S.K.; Kandasamy, R.K.; Subbannayya, Y.; Pinto, S.M. A Comprehensive Pathway Map of IL-18-Mediated Signalling. J. Cell Commun. Signal. 2020, 14, 257–266. [Google Scholar] [CrossRef]
- Ihim, S.A.; Abubakar, S.D.; Zian, Z.; Sasaki, T.; Saffarioun, M.; Maleknia, S.; Azizi, G. Interleukin-18 Cytokine in Immunity, Inflammation, and Autoimmunity: Biological Role in Induction, Regulation, and Treatment. Front. Immunol. 2022, 13, 919973. [Google Scholar] [CrossRef]
- Shim, J.W.; Sandlund, J.; Han, C.H.; Hameed, M.Q.; Connors, S.; Klagsbrun, M.; Madsen, J.R.; Irwin, N. VEGF, Which Is Elevated in the CSF of Patients with Hydrocephalus, Causes Ventriculomegaly and Ependymal Changes in Rats. Exp. Neurol. 2013, 247, 703–709. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Yang, T.-T.; Liu, L.; Peng, X.-C.; Qian, F.; Tang, F.-R. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023, 13, 754. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Wang, M.; Cai, X.; Zhu, Q.; Mao, L. Leucine Rich Alpha-2-Glycoprotein 1 (Lrg1) Silencing Protects against Sepsis-Mediated Brain Injury by Inhibiting Transforming Growth Factor Beta1 (TGFβ1)/SMAD Signaling Pathway. Bioengineered 2022, 13, 7316–7327. [Google Scholar] [CrossRef] [PubMed]
- Dritsoula, A.; Dowsett, L.; Pilotti, C.; O’Connor, M.N.; Moss, S.E.; Greenwood, J. Angiopathic Activity of LRG1 Is Induced by the IL-6/STAT3 Pathway. Sci. Rep. 2022, 12, 4867. [Google Scholar] [CrossRef] [PubMed]
- Freudlsperger, C.; Bian, Y.; Contag Wise, S.; Burnett, J.; Coupar, J.; Yang, X.; Chen, Z.; Van Waes, C. TGF-β and NF-κB Signal Pathway Cross-Talk Is Mediated through TAK1 and SMAD7 in a Subset of Head and Neck Cancers. Oncogene 2013, 32, 1549–1559. [Google Scholar] [CrossRef]
- Wang, X.; Abraham, S.; McKenzie, J.A.G.; Jeffs, N.; Swire, M.; Tripathi, V.B.; Luhmann, U.F.O.; Lange, C.A.K.; Zhai, Z.; Arthur, H.M.; et al. LRG1 Promotes Angiogenesis by Modulating Endothelial TGF-β Signalling. Nature 2013, 499, 306–311. [Google Scholar] [CrossRef]
- Lin, Y.; Jamison, S.; Lin, W. Interferon-γ Activates Nuclear Factor-κ B in Oligodendrocytes through a Process Mediated by the Unfolded Protein Response. PLoS ONE 2012, 7, e36408. [Google Scholar] [CrossRef]
- Karimy, J.K.; Reeves, B.C.; Damisah, E.; Duy, P.Q.; Antwi, P.; David, W.; Wang, K.; Schiff, S.J.; Limbrick, D.D.; Alper, S.L.; et al. Inflammation in Acquired Hydrocephalus: Pathogenic Mechanisms and Therapeutic Targets. Nat. Rev. Neurol. 2020, 16, 285–296. [Google Scholar] [CrossRef]
- Hao, X.; Junwen, W.; Jiaqing, L.; Ran, L.; Zhuo, Z.; Yimin, H.; Wei, J.; Wei, S.; Ting, L. High Fibrosis Indices in Cerebrospinal Fluid of Patients with Shunt-Dependent Post-Traumatic Chronic Hydrocephalus. Transl. Neurosci. 2016, 7, 92–97. [Google Scholar] [CrossRef]
- Jeppsson, A.; Wikkelsö, C.; Blennow, K.; Zetterberg, H.; Constantinescu, R.; Remes, A.M.; Herukka, S.-K.; Rauramaa, T.; Nagga, K.; Leinonen, V.; et al. CSF Biomarkers Distinguish Idiopathic Normal Pressure Hydrocephalus from Its Mimics. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1117–1123. [Google Scholar] [CrossRef]
- Jeppsson, A.; Bjerke, M.; Hellström, P.; Blennow, K.; Zetterberg, H.; Kettunen, P.; Wikkelsø, C.; Wallin, A.; Tullberg, M. Shared CSF Biomarker Profile in Idiopathic Normal Pressure Hydrocephalus and Subcortical Small Vessel Disease. Front. Neurol. 2022, 13, 839307. [Google Scholar] [CrossRef]
- Minta, K.; Brinkmalm, G.; Al Nimer, F.; Thelin, E.P.; Piehl, F.; Tullberg, M.; Jeppsson, A.; Portelius, E.; Zetterberg, H.; Blennow, K.; et al. Dynamics of Cerebrospinal Fluid Levels of Matrix Metalloproteinases in Human Traumatic Brain Injury. Sci. Rep. 2020, 10, 18075. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhou, J.; Qin, X.; Zheng, H.; Gao, B.; Liu, X.; Jin, G.; Zhou, Z. MT1-MMP Deficiency Leads to Defective Ependymal Cell Maturation, Impaired Ciliogenesis, and Hydrocephalus. JCI Insight 2020, 5, e132782. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, L.; Yu, C.; Chu, X.; Zhu, B. Diagnostic Value of Serum NLRP3, Metalloproteinase-9 and Interferon-γ for Postoperative Hydrocephalus and Intracranial Infection in Patients with Severe Craniocerebral Trauma. Exp. Physiol. 2024, 109, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.A.; Morales, D.M.; Arshad, R.; McAllister, J.P.; Limbrick, D.D. Cerebrospinal Fluid Biomarkers of Neuroinflammation in Children with Hydrocephalus and Shunt Malfunction. Fluids Barriers CNS 2021, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, M.; Kumar, S.; Sharife, H.; Volinsky, E.; Gileles-Hillel, A.; Licht, T.; Permyakova, A.; Hinden, L.; Azar, S.; Friedmann, Y.; et al. Counteracting Age-Related VEGF Signaling Insufficiency Promotes Healthy Aging and Extends Life Span. Science 2021, 373, eabc8479. [Google Scholar] [CrossRef]
- Shim, J.W.; Sandlund, J.; Hameed, M.Q.; Blazer-Yost, B.; Zhou, F.C.; Klagsbrun, M.; Madsen, J.R. Excess HB-EGF, Which Promotes VEGF Signaling, Leads to Hydrocephalus. Sci. Rep. 2016, 6, 26794. [Google Scholar] [CrossRef]
- Yang, J.; Shanahan, K.J.; Shriver, L.P.; Luciano, M.G. Exercise-Induced Changes of Cerebrospinal Fluid Vascular Endothelial Growth Factor in Adult Chronic Hydrocephalus Patients. J. Clin. Neurosci. 2016, 24, 52–56. [Google Scholar] [CrossRef]
- Li, X.; Padhan, N.; Sjöström, E.O.; Roche, F.P.; Testini, C.; Honkura, N.; Sáinz-Jaspeado, M.; Gordon, E.; Bentley, K.; Philippides, A.; et al. VEGFR2 pY949 Signalling Regulates Adherens Junction Integrity and Metastatic Spread. Nat. Commun. 2016, 7, 11017. [Google Scholar] [CrossRef]
- Dejana, E.; Vestweber, D. The Role of VE-Cadherin in Vascular Morphogenesis and Permeability Control. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 116, pp. 119–144. [Google Scholar]
- Rahimi, N. Defenders and Challengers of Endothelial Barrier Function. Front. Immunol. 2017, 8, 1847. [Google Scholar] [CrossRef]
- Shen, D.; Ye, X.; Li, J.; Hao, X.; Jin, L.; Jin, Y.; Tong, L.; Gao, F. Metformin Preserves VE–Cadherin in Choroid Plexus and Attenuates Hydrocephalus via VEGF/VEGFR2/p-Src in an Intraventricular Hemorrhage Rat Model. Int. J. Mol. Sci. 2022, 23, 8552. [Google Scholar] [CrossRef]
- Huang, H.; Yang, J.; Luciano, M.; Shriver, L.P. Longitudinal Metabolite Profiling of Cerebrospinal Fluid in Normal Pressure Hydrocephalus Links Brain Metabolism with Exercise-Induced VEGF Production and Clinical Outcome. Neurochem. Res. 2016, 41, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament Light Chain as a Biomarker in Neurological Disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Jeppsson, A.; Zetterberg, H.; Blennow, K.; Wikkelsø, C. Idiopathic Normal-Pressure Hydrocephalus: Pathophysiology and Diagnosis by CSF Biomarkers. Neurology 2013, 80, 1385–1392. [Google Scholar] [CrossRef]
- Pyykkö, O.T.; Lumela, M.; Rummukainen, J.; Nerg, O.; Seppälä, T.T.; Herukka, S.-K.; Koivisto, A.M.; Alafuzoff, I.; Puli, L.; Savolainen, S.; et al. Cerebrospinal Fluid Biomarker and Brain Biopsy Findings in Idiopathic Normal Pressure Hydrocephalus. PLoS ONE 2014, 9, e91974. [Google Scholar] [CrossRef]
- Jeppsson, A.; Sandelius, Å.; Zettergren, A.; Kern, S.; Skoog, I.; Blennow, K.; Zetterberg, H.; Wikkelsø, C.; Hellström, P.; Tullberg, M. Plasma and Cerebrospinal Fluid Concentrations of Neurofilament Light Protein Correlate in Patients with Idiopathic Normal Pressure Hydrocephalus. Fluids Barriers CNS 2023, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Jeppsson, A.; Höltta, M.; Zetterberg, H.; Blennow, K.; Wikkelsø, C.; Tullberg, M. Amyloid Mis-Metabolism in Idiopathic Normal Pressure Hydrocephalus. Fluids Barriers CNS 2016, 13, 13. [Google Scholar] [CrossRef]
- Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, Å.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H. Comparison of Three Analytical Platforms for Quantification of the Neurofilament Light Chain in Blood Samples: ELISA, Electrochemiluminescence Immunoassay and Simoa. Clin. Chem. Lab. Med. CCLM 2016, 54, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association of Plasma Neurofilament Light With Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurol. 2017, 74, 557. [Google Scholar] [CrossRef]
- Hansson, O.; Janelidze, S.; Hall, S.; Magdalinou, N.; Lees, A.J.; Andreasson, U.; Norgren, N.; Linder, J.; Forsgren, L.; Constantinescu, R.; et al. Blood-Based NfL: A Biomarker for Differential Diagnosis of Parkinsonian Disorder. Neurology 2017, 88, 930–937. [Google Scholar] [CrossRef]
- Gisslén, M.; Price, R.W.; Andreasson, U.; Norgren, N.; Nilsson, S.; Hagberg, L.; Fuchs, D.; Spudich, S.; Blennow, K.; Zetterberg, H. Plasma Concentration of the Neurofilament Light Protein (NFL) Is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study. eBioMedicine 2016, 3, 135–140. [Google Scholar] [CrossRef]
- Pyrgelis, E.-S.; Boufidou, F.; Constantinides, V.C.; Papaioannou, M.; Papageorgiou, S.G.; Stefanis, L.; Paraskevas, G.P.; Kapaki, E. Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review. Diagnostics 2022, 12, 2976. [Google Scholar] [CrossRef]
- Albrechtsen, M.; Sørensen, P.S.; Gjerris, F.; Bock, E. High Cerebrospinal Fluid Concentration of Glial Fibrillary Acidic Protein (GFAP) in Patients with Normal Pressure Hydrocephalus. J. Neurol. Sci. 1985, 70, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zhang, L.; Zhang, M.; Zeng, Y.; Li, Y. Supratentorial Hydrocephalus with an Anti-glial Fibrillary Acidic Protein (GFAP) Antibody-positive Status: A Case Report. CNS Neurosci. Ther. 2022, 28, 2335–2337. [Google Scholar] [CrossRef] [PubMed]
- Baktir, Y.; Parenrengi, M.A.; Suryaningtyas, W.; Fauziah, D.; Sudiana, I.K.; Utomo, B. Hydrocephalus Mice Model: Choroid Plexus Aquaporin-1 Dynamics Following Cerebrospinal Fluid Drainage. Pharmacogn. J. 2023, 15, 891–896. [Google Scholar] [CrossRef]
- Verkman, A.S.; Tradtrantip, L.; Smith, A.J.; Yao, X. Aquaporin Water Channels and Hydrocephalus. Pediatr. Neurosurg. 2016, 52, 409–416. [Google Scholar] [CrossRef]
- Zhan, C.; Xiao, G.; Zhang, X.; Chen, X.; Zhang, Z.; Liu, J. Decreased MiR-30a promotes TGF-β1-mediated arachnoid fibrosis in post-hemorrhagic hydrocephalus. Transl. Neurosci. 2020, 11, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Mehmedika-Suljić, E.; Izetbegović, S.; Serdarević, N.; Rovčanin, B.; Mahmutbegović, N.; Mehičević, A.; Omerhodžić, I. Serum biomarkers in normal pressure hydrocephalus. Med. Glas. 2023, 20, 235–241. [Google Scholar] [CrossRef]
- Lolansen, S.D.; Rostgaard, N.; Barbuskaite, D.; Capion, T.; Olsen, M.H.; Norager, N.H.; Vilhardt, F.; Andreassen, S.N.; Toft-Bertelsen, T.L.; Ye, F.; et al. Posthemorrhagic hydrocephalus associates with elevated inflammation and CSF hypersecretion via activation of choroidal transporters. Fluids Barriers CNS 2022, 19, 1–19. [Google Scholar] [CrossRef]
- Schmitz, T.; Heep, A.; Groenendaal, F.; Hüseman, D.; Kie, S.; Bartmann, P.; Obladen, M.; Felderhoff-Müser, U. Interleukin-1β, Interleukin-18, and Interferon-γ Expression in the Cerebrospinal Fluid of Premature Infants with Posthemorrhagic Hydrocephalus—Markers of White Matter Damage? Pediatr. Res. 2007, 61, 722–726. [Google Scholar] [CrossRef]
- Braun, M.; Boström, G.; Ingelsson, M.; Kilander, L.; Löwenmark, M.; Nyholm, D.; Burman, J.; Niemelä, V.; Freyhult, E.; Kultima, K.; et al. Levels of inflammatory cytokines MCP-1, CCL4, and PD-L1 in CSF differentiate idiopathic normal pressure hydrocephalus from neurodegenerative diseases. Fluids Barriers CNS 2023, 20, 1–9. [Google Scholar] [CrossRef]
- Yang, G.; Meng, Y.; Li, W.; Yong, Y.; Fan, Z.; Ding, H.; Wei, Y.; Luo, J.; Ke, Z. Neuronal MCP-1 Mediates Microglia Recruitment and Neurodegeneration Induced by the Mild Impairment of Oxidative Metabolism. Brain Pathol. 2010, 21, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Kaya, D.; Isik, A.T. Cerebrospinal fluid biomarkers for normal pressure hydrocephalus. Biomarkers Neuropsychiatry 2023, 9, 100071. [Google Scholar] [CrossRef]
- Okamoto, T.; Takahashi, S.; Nakamura, E.; Nagaya, K.; Hayashi, T.; Shirai, M.; Fujieda, K. Increased expression of matrix metalloproteinase-9 and hepatocyte growth factor in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus. Early Hum. Dev. 2010, 86, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Habiyaremye, G.; Morales, D.M.; Morgan, C.D.; McAllister, J.P.; CreveCoeur, T.S.; Han, R.H.; Gabir, M.; Baksh, B.; Mercer, D.; Limbrick, D.D., Jr. Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids Barriers CNS 2017, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Killer, M.; Arthur, A.; Al-Schameri, A.R.; Barr, J.; Elbert, D.; Ladurner, G.; Shum, J.; Cruise, G. Cytokine and Growth Factor Concentration in Cerebrospinal Fluid from Patients with Hydrocephalus Following Endovascular Embolization of Unruptured Aneurysms in Comparison with Other Types of Hydrocephalus. Neurochem. Res. 2010, 35, 1652–1658. [Google Scholar] [CrossRef]
- Xu, H.; He, J.; Du, H.; Jing, X.; Liu, X. Evaluation of the Choroid Plexus Epithelium Inflammation TLR4/NF-κB/NKCC1 Signal Pathway Activation in the Development of Hydrocephalus. CNS Neurosci. Ther. 2024, 30, e70085. [Google Scholar] [CrossRef]
- Yuan, L.; Zou, D.; Yang, X.; Chen, X.; Lu, Y.; Zhang, A.; Zhang, P.; Wei, F. Proteomics and functional study reveal kallikrein-6 enhances communicating hydrocephalus. Clin. Proteom. 2021, 18, 1–12. [Google Scholar] [CrossRef]
- Klebe, D.; McBride, D.; Krafft, P.R.; Flores, J.J.; Tang, J.; Zhang, J.H. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways. J. Neurosci. Res. 2019, 98, 105–120. [Google Scholar] [CrossRef]
- Kamalian, A.; Barough, S.S.; Ho, S.G.; Albert, M.; Luciano, M.G.; Yasar, S.; Moghekar, A. Molecular signatures of normal pressure hydrocephalus: A large-scale proteomic analysis of cerebrospinal fluid. Fluids Barriers CNS 2024, 21, 1–12. [Google Scholar] [CrossRef]
- de Geus, M.B.; Wu, C.-Y.; Dodge, H.; Leslie, S.N.; Wang, W.; Lam, T.T.; Kahle, K.T.; Chan, D.; Kivisäkk, P.; Nairn, A.C.; et al. Unbiased CSF Proteomics in Patients With Idiopathic Normal Pressure Hydrocephalus to Identify Molecular Signatures and Candidate Biomarkers. Neurology 2025, 104, e213375. [Google Scholar] [CrossRef]
- Sokół, B.; Urbaniak, B.; Zaremba, B.; Wąsik, N.; Kokot, Z.J.; Jankowski, R. CSF proteomics of patients with hydrocephalus and subarachnoid haemorrhage. Transl. Neurosci. 2019, 10, 244–253. [Google Scholar] [CrossRef]
- Torretta, E.; Arosio, B.; Barbacini, P.; Capitanio, D.; Rossi, P.D.; Moriggi, M.; Clerici, M.; Mari, D.; Cesari, M.; Gelfi, C. Novel Insight in Idiopathic Normal Pressure Hydrocephalus (iNPH) Biomarker Discovery in CSF. Int. J. Mol. Sci. 2021, 22, 8034. [Google Scholar] [CrossRef] [PubMed]
- Hällqvist, J.; Bartl, M.; Dakna, M.; Schade, S.; Garagnani, P.; Bacalini, M.-G.; Pirazzini, C.; Bhatia, K.; Schreglmann, S.; Xylaki, M.; et al. Plasma proteomics identify biomarkers predicting Parkinson’s disease up to 7 years before symptom onset. Nat. Commun. 2024, 15, 4759. [Google Scholar] [CrossRef]
- Chen, M.; Xia, W. Proteomic Profiling of Plasma and Brain Tissue from Alzheimer’s Disease Patients Reveals Candidate Network of Plasma Biomarkers. J. Alzheimer’s Dis. 2020, 76, 349–368. [Google Scholar] [CrossRef]
- Mantovani, P.; Albini-Riccioli, L.; Giannini, G.; Milletti, D.; Sorenson, T.J.; Stanzani-Maserati, M.; Oppi, F.; Elder, B.D.; Cevoli, S.; Cortelli, P.; et al. Anterior Callosal Angle: A New Marker of Idiopathic Normal Pressure Hydrocephalus? World Neurosurg. 2020, 139, e548–e552. [Google Scholar] [CrossRef]
- Ishii, K.; Kanda, T.; Harada, A.; Miyamoto, N.; Kawaguchi, T.; Shimada, K.; Ohkawa, S.; Uemura, T.; Yoshikawa, T.; Mori, E. Clinical Impact of the Callosal Angle in the Diagnosis of Idiopathic Normal Pressure Hydrocephalus. Eur. Radiol. 2008, 18, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Cagnin, A.; Simioni, M.; Tagliapietra, M.; Citton, V.; Pompanin, S.; Della Puppa, A.; Ermani, M.; Manara, R. A Simplified Callosal Angle Measure Best Differentiates Idiopathic-Normal Pressure Hydrocephalus from Neurodegenerative Dementia. J. Alzheimers Dis. 2015, 46, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Fällmar, D.; Andersson, O.; Kilander, L.; Löwenmark, M.; Nyholm, D.; Virhammar, J. Imaging Features Associated with Idiopathic Normal Pressure Hydrocephalus Have High Specificity Even When Comparing with Vascular Dementia and Atypical Parkinsonism. Fluids Barriers CNS 2021, 18, 35. [Google Scholar] [CrossRef]
- Quattrone, A.; Sarica, A.; La Torre, D.; Morelli, M.; Mechelli, A.; Arcuri, P.P.; Quattrone, A. Progressive Supranuclear Palsy with Marked Ventricular Dilatation Mimicking Normal Pressure Hydrocephalus. Neurol. Sci. 2022, 43, 1783–1790. [Google Scholar] [CrossRef]
- Savolainen, S.; Laakso, M.P.; Paljärvi, L.; Alafuzoff, I.; Hurskainen, H.; Partanen, K.; Soininen, H.; Vapalahti, M. MR Imaging of the Hippocampus in Normal Pressure Hydrocephalus: Correlations with Cortical Alzheimer’s Disease Confirmed by Pathologic Analysis. AJNR Am. J. Neuroradiol. 2000, 21, 409–414. [Google Scholar]
- Ugga, L.; Cuocolo, R.; Cocozza, S.; Pontillo, G.; Elefante, A.; Quarantelli, M.; Vicidomini, C.; De Pandis, M.F.; De Michele, G.; D’Amico, A.; et al. Magnetic Resonance Parkinsonism Indices and Interpeduncular Angle in Idiopathic Normal Pressure Hydrocephalus and Progressive Supranuclear Palsy. Neuroradiology 2020, 62, 1657–1665. [Google Scholar] [CrossRef]
- Caligiuri, M.E.; Quattrone, A.; Mechelli, A.; La Torre, D.; Quattrone, A. Semi-Automated Assessment of the Principal Diffusion Direction in the Corpus Callosum: Differentiation of Idiopathic Normal Pressure Hydrocephalus from Neurodegenerative Diseases. J. Neurol. 2022, 269, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Choi, W.; Yoon, U.; Lee, J.-M.; Lee, H.-W. Abnormal White Matter Integrity in Elderly Patients with Idiopathic Normal-Pressure Hydrocephalus: A Tract-Based Spatial Statistics Study. Eur. Neurol. 2016, 75, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Seo, S.W.; Lee, K.M.; Kim, S.T.; Lee, J.I.; Nam, D.H.; Na, D.L. Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus from Other Dementias Using Diffusion Tensor Imaging. AJNR Am. J. Neuroradiol. 2011, 32, 1496–1503. [Google Scholar] [CrossRef]
- Hořínek, D.; Štěpán-Buksakowska, I.; Szabó, N.; Erickson, B.J.; Tóth, E.; Šulc, V.; Beneš, V.; Vrána, J.; Hort, J.; Nimsky, C.; et al. Difference in White Matter Microstructure in Differential Diagnosis of Normal Pressure Hydrocephalus and Alzheimer’s Disease. Clin. Neurol. Neurosurg. 2016, 140, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Ivkovic, M.; Liu, B.; Ahmed, F.; Moore, D.; Huang, C.; Raj, A.; Kovanlikaya, I.; Heier, L.; Relkin, N. Differential Diagnosis of Normal Pressure Hydrocephalus by MRI Mean Diffusivity Histogram Analysis. AJNR Am. J. Neuroradiol. 2013, 34, 1168–1174. [Google Scholar] [CrossRef]
- Marumoto, K.; Koyama, T.; Hosomi, M.; Kodama, N.; Miyake, H.; Domen, K. Diffusion Tensor Imaging in Elderly Patients with Idiopathic Normal Pressure Hydrocephalus or Parkinson’s Disease: Diagnosis of Gait Abnormalities. Fluids Barriers CNS 2012, 9, 20. [Google Scholar] [CrossRef]
- Younes, K.; Hasan, K.M.; Kamali, A.; McGough, C.E.; Keser, Z.; Hasan, O.; Melicher, T.; Kramer, L.A.; Schulz, P.E.; the Alzheimer’s Disease Neuroimaging Initiative Researchers. Diffusion Tensor Imaging of the Superior Thalamic Radiation and Cerebrospinal Fluid Distribution in Idiopathic Normal Pressure Hydrocephalus. J. Neuroimaging 2019, 29, 242–251. [Google Scholar] [CrossRef]
- Quattrone, A.; Sarica, A.; La Torre, D.; Morelli, M.; Vescio, B.; Nigro, S.; Barbagallo, G.; Nisticò, R.; Salsone, M.; Arcuri, P.P.; et al. Magnetic Resonance Imaging Biomarkers Distinguish Normal Pressure Hydrocephalus From Progressive Supranuclear Palsy. Mov. Disord. 2020, 35, 1406–1415. [Google Scholar] [CrossRef]
- Kuroda, T.; Honma, M.; Mori, Y.; Futamura, A.; Sugimoto, A.; Kasai, H.; Yano, S.; Hieda, S.; Kasuga, K.; Ikeuchi, T.; et al. White Matter Lesions May Aid in Differentiating Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease. J. Alzheimers Dis. 2022, 85, 851–862. [Google Scholar] [CrossRef]
- Kockum, K.; Virhammar, J.; Riklund, K.; Söderström, L.; Larsson, E.-M.; Laurell, K. Standardized Image Evaluation in Patients with Idiopathic Normal Pressure Hydrocephalus: Consistency and Reproducibility. Neuroradiology 2019, 61, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Kockum, K.; Lilja-Lund, O.; Larsson, E.-M.; Rosell, M.; Söderström, L.; Virhammar, J.; Laurell, K. The Idiopathic Normal-pressure Hydrocephalus Radscale: A Radiological Scale for Structured Evaluation. Eur. J. Neurol. 2018, 25, 569–576. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Su, G.; Shi, D.; Gopinath, S.C.B.; Lakshmipriya, T.; Li, S. Hydrocephaly Analysis Supported by Computerized Tomography and Nuclear Magnetic Resonance. J. Anal. Methods Chem. 2019, 2019, 5872347. [Google Scholar] [CrossRef] [PubMed]
- Robson, C.D.; MacDougall, R.D.; Madsen, J.R.; Warf, B.C.; Robertson, R.L. Neuroimaging of Children With Surgically Treated Hydrocephalus: A Practical Approach. Am. J. Roentgenol. 2017, 208, 413–419. [Google Scholar] [CrossRef]
- Yin, R.; Wen, J.; Wei, J. Progression in Neuroimaging of Normal Pressure Hydrocephalus. Front. Neurol. 2021, 12, 700269. [Google Scholar] [CrossRef]
- Eide, P.K.; Ringstad, G. Delayed Clearance of Cerebrospinal Fluid Tracer from Entorhinal Cortex in Idiopathic Normal Pressure Hydrocephalus: A Glymphatic Magnetic Resonance Imaging Study. J. Cereb. Blood Flow Metab. 2019, 39, 1355–1368. [Google Scholar] [CrossRef] [PubMed]
- Eide, P.K.; Pripp, A.H.; Ringstad, G. Magnetic Resonance Imaging Biomarkers of Cerebrospinal Fluid Tracer Dynamics in Idiopathic Normal Pressure Hydrocephalus. Brain Commun. 2020, 2, fcaa187. [Google Scholar] [CrossRef]
- Krauss, J.K.; Regel, J.P.; Vach, W.; Orszagh, M.; Jüngling, F.D.; Bohus, M.; Droste, D.W. White Matter Lesions in Patients with Idiopathic Normal Pressure Hydrocephalus and in an Age-Matched Control Group: A Comparative Study. Neurosurgery 1997, 40, 491–496. [Google Scholar] [CrossRef]
- Shinoda, N.; Hirai, O.; Hori, S.; Mikami, K.; Bando, T.; Shimo, D.; Kuroyama, T.; Kuramoto, Y.; Matsumoto, M.; Ueno, Y. Utility of MRI-Based Disproportionately Enlarged Subarachnoid Space Hydrocephalus Scoring for Predicting Prognosis after Surgery for Idiopathic Normal Pressure Hydrocephalus: Clinical Research. J. Neurosurg. 2017, 127, 1436–1442. [Google Scholar] [CrossRef]
- Craven, C.L.; Toma, A.K.; Mostafa, T.; Patel, N.; Watkins, L.D. The Predictive Value of DESH for Shunt Responsiveness in Idiopathic Normal Pressure Hydrocephalus. J. Clin. Neurosci. 2016, 34, 294–298. [Google Scholar] [CrossRef]
- Zhou, X.; Ye, Q.; Yang, X.; Chen, J.; Ma, H.; Xia, J.; Del Ser, J.; Yang, G. AI-Based Medical e-Diagnosis for Fast and Automatic Ventricular Volume Measurement in Patients with Normal Pressure Hydrocephalus. Neural Comput. Appl. 2023, 35, 16011–16020. [Google Scholar] [CrossRef]
- Duan, W.; Zhang, J.; Zhang, L.; Lin, Z.; Chen, Y.; Hao, X.; Wang, Y.; Zhang, H. Evaluation of an Artificial Intelligent Hydrocephalus Diagnosis Model Based on Transfer Learning. Medicine 2020, 99, e21229. [Google Scholar] [CrossRef] [PubMed]
- Bianco, M.G.; Quattrone, A.; Sarica, A.; Vescio, B.; Buonocore, J.; Vaccaro, M.G.; Aracri, F.; Calomino, C.; Gramigna, V.; Quattrone, A. Cortical Atrophy Distinguishes Idiopathic Normal-Pressure Hydrocephalus from Progressive Supranuclear Palsy: A Machine Learning Approach. Parkinsonism Relat. Disord. 2022, 103, 7–14. [Google Scholar] [CrossRef]
- Prevedello, L.M.; Erdal, B.S.; Ryu, J.L.; Little, K.J.; Demirer, M.; Qian, S.; White, R.D. Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology 2017, 285, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Diaz, L.R.; Prakash, N.; Gong, G.X.; Posada-Quintero, H.F. Artificial Intelligence Approaches for the Detection of Normal Pressure Hydrocephalus: A Systematic Review. Appl. Sci. 2025, 15, 3653. [Google Scholar] [CrossRef]
- Fernandes, R.T.; Fernandes, F.W.; Kundu, M.; Ramsay, D.S.C.; Salih, A.; Namireddy, S.N.; Jankovic, D.; Kalasauskas, D.; Ottenhausen, M.; Kramer, A.; et al. Artificial Intelligence for Prediction of Shunt Response in Idiopathic Normal Pressure Hydrocephalus: A Systematic Review. World Neurosurg. 2024, 192, e281–e291. [Google Scholar] [CrossRef]
- Mattoli, M.V.; Treglia, G.; Calcagni, M.L.; Mangiola, A.; Anile, C.; Trevisi, G. Usefulness of Brain Positron Emission Tomography with Different Tracers in the Evaluation of Patients with Idiopathic Normal Pressure Hydrocephalous. Int. J. Mol. Sci. 2020, 21, 6523. [Google Scholar] [CrossRef]
- Townley, R.A.; Botha, H.; Graff-Radford, J.; Boeve, B.F.; Petersen, R.C.; Senjem, M.L.; Knopman, D.S.; Lowe, V.; Jack, C.R.; Jones, D.T. 18F-FDG PET-CT Pattern in Idiopathic Normal Pressure Hydrocephalus. NeuroImage Clin. 2018, 18, 897–902. [Google Scholar] [CrossRef]
- Rau, A.; Schröter, N.; Blazhenets, G.; Maurer, C.; Urbach, H.; Meyer, P.T.; Frings, L. The Metabolic Spatial Covariance Pattern of Definite Idiopathic Normal Pressure Hydrocephalus: An FDG PET Study with Principal Components Analysis. Alzheimers Res. Ther. 2023, 15, 202. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Park, S.B.; Lee, M.; Ju, H.; Im, K.; Kwon, K.-Y. Detailed Visual Assessment of Striatal Dopaminergic Depletion in Patients with Idiopathic Normal Pressure Hydrocephalus: Unremarkable or Not? BMC Neurol. 2020, 20, 277. [Google Scholar] [CrossRef]
- Ma, J.; Hamed, M.; Victor, D.; Kay, T.; Salgado, M. DaT-Scans Have Limited Utility in Predicting Treatment Response to Ventriculoperitoneal Shunts in Normal Pressure Hydrocephalus. Mov. Disord. 2023, 38 (Suppl. 1), 287. [Google Scholar]
- Murphy, M.C.; Huston, J.; Ehman, R.L. MR Elastography of the Brain and Its Application in Neurological Diseases. NeuroImage 2019, 187, 176–183. [Google Scholar] [CrossRef]
- Coelho, A.; Sousa, N. Magnetic Resonance Elastography of the Ageing Brain in Normal and Demented Populations: A Systematic Review. Hum. Brain Mapp. 2022, 43, 4207–4218. [Google Scholar] [CrossRef]
- Wagshul, M.E.; McAllister, J.P.; Limbrick, D.D., Jr.; Yang, S.; Mowrey, W.; Goodrich, J.T.; Meiri, A.; Morales, D.M.; Kobets, A.; Abbott, R. MR Elastography Demonstrates Reduced White Matter Shear Stiffness in Early-Onset Hydrocephalus. NeuroImage Clin. 2021, 30, 102579. [Google Scholar] [CrossRef] [PubMed]
- Jugé, L.; Pong, A.; Bongers, A.; Sinkus, R.; Bilston, L.E.; Cheng, S. Deformation, Microstructure and Stiffness of the Rat Brain Tissue during the Development of Experimental Obstructive Hydrocephalus. Fluids Barriers CNS 2015, 12, O6. [Google Scholar] [CrossRef]
- Karki, P.; Murphy, M.C.; Cogswell, P.M.; Senjem, M.L.; Graff-Radford, J.; Elder, B.D.; Perry, A.; Graffeo, C.S.; Meyer, F.B.; Jack, C.R.; et al. Prediction of Surgical Outcomes in Normal Pressure Hydrocephalus by MR Elastography. Am. J. Neuroradiol. 2024, 45, 328–334. [Google Scholar] [CrossRef]
- Fattahi, N.; Arani, A.; Perry, A.; Meyer, F.; Manduca, A.; Glaser, K.; Senjem, M.L.; Ehman, R.L.; Huston, J. MR Elastography Demonstrates Increased Brain Stiffness in Normal Pressure Hydrocephalus. AJNR Am. J. Neuroradiol. 2016, 37, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriou, A.; Blystad, I.; Tisell, A.; Gasslander, J.; Lundin, F. Indication of Thalamo-Cortical Circuit Dysfunction in Idiopathic Normal Pressure Hydrocephalus: A Diffusion Tensor Imaging Study. Sci. Rep. 2020, 10, 6148. [Google Scholar] [CrossRef]
- Keong, N.C.; Pena, A.; Price, S.J.; Czosnyka, M.; Czosnyka, Z.; DeVito, E.E.; Housden, C.R.; Sahakian, B.J.; Pickard, J.D. Diffusion Tensor Imaging Profiles Reveal Specific Neural Tract Distortion in Normal Pressure Hydrocephalus. PLOS ONE 2017, 12, e0181624. [Google Scholar] [CrossRef]
- Daouk, J.; Chaarani, B.; Zmudka, J.; Capel, C.; Fichten, A.; Bouzerar, R.; Gondry-Jouet, C.; Jouanny, P.; Balédent, O. Relationship between Cerebrospinal Fluid Flow, Ventricles Morphology, and DTI Properties in Internal Capsules: Differences between Alzheimer’s Disease and Normal-Pressure Hydrocephalus. Acta Radiol. 2014, 55, 992–999. [Google Scholar] [CrossRef]
- Grazzini, I.; Redi, F.; Sammartano, K.; Cuneo, G.L. Diffusion Tensor Imaging in Idiopathic Normal Pressure Hydrocephalus: Clinical and CSF Flowmetry Correlations. Neuroradiol. J. 2020, 33, 66–74. [Google Scholar] [CrossRef]
- Kang, K.; Yoon, U.; Choi, W.; Lee, H.-W. Diffusion Tensor Imaging of Idiopathic Normal-Pressure Hydrocephalus and the Cerebrospinal Fluid Tap Test. J. Neurol. Sci. 2016, 364, 90–96. [Google Scholar] [CrossRef]
- Keong, N.C.; Lock, C.; Soon, S.; Hernowo, A.T.; Czosnyka, Z.; Czosnyka, M.; Pickard, J.D.; Narayanan, V. Diffusion Tensor Imaging Profiles Can Distinguish Diffusivity and Neural Properties of White Matter Injury in Hydrocephalus vs. Non-Hydrocephalus Using a Strategy of a Periodic Table of DTI Elements. Front. Neurol. 2022, 13, 868026. [Google Scholar] [CrossRef]
- Virhammar, J.; Laurell, K.; Ahlgren, A.; Larsson, E.-M. Arterial Spin-Labeling Perfusion MR Imaging Demonstrates Regional CBF Decrease in Idiopathic Normal Pressure Hydrocephalus. Am. J. Neuroradiol. 2017, 38, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Chen, S.; Zhang, Z.; Huang, J.; Gui, Y.; Luo, D.; Deng, X.; Dai, J.; Xiao, X. Three-Dimensional Pseudocontinuous Arterial Spin Labeling with Dual Postlabeling Delay for Reflecting Cerebral Blood Flow Regulation in Patients with Hydrocephalus: A Retrospective Cross-Sectional Study. Quant. Imaging Med. Surg. 2024, 14, 5861–5876. [Google Scholar] [CrossRef] [PubMed]
- Bagatto, D.; Tereshko, Y.; Piccolo, D.; Fabbro, S.; De Colle, M.C.; Morassi, M.; Belgrado, E.; Lettieri, C.; Gigli, G.L.; Valente, M.; et al. Clinical Applicability of Arterial Spin Labeling Magnetic Resonance Imaging in Patients with Possible Idiopathic Normal Pressure Hydrocephalus: A Prospective Preliminary Study. Clin. Neurol. Neurosurg. 2023, 227, 107645. [Google Scholar] [CrossRef] [PubMed]
- Ringstad, G.; Vatnehol, S.A.S.; Eide, P.K. Glymphatic MRI in Idiopathic Normal Pressure Hydrocephalus. Brain J. Neurol. 2017, 140, 2691–2705. [Google Scholar] [CrossRef]
- Eide, P.K.; Lashkarivand, A.; Pripp, A.; Valnes, L.M.; Hovd, M.H.; Ringstad, G.; Blennow, K.; Zetterberg, H. Plasma Neurodegeneration Biomarker Concentrations Associate with Glymphatic and Meningeal Lymphatic Measures in Neurological Disorders. Nat. Commun. 2023, 14, 2084. [Google Scholar] [CrossRef]
- Eide, P.K.; Lashkarivand, A.; Hagen-Kersten, Å.A.; Gjertsen, Ø.; Nedregaard, B.; Sletteberg, R.; Løvland, G.; Vatnehol, S.A.S.; Pripp, A.H.; Valnes, L.M.; et al. Intrathecal Contrast-Enhanced Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics and Glymphatic Enhancement in Idiopathic Normal Pressure Hydrocephalus. Front. Neurol. 2022, 13, 857328. [Google Scholar] [CrossRef]
Biomarker | Observed Changes/Associations | Study |
---|---|---|
AQP1 | Decreased expression, intracellular sequestration; possibly limits CSF production | Baktir et al. [97] |
AQP4 | Increased expression; may enhance CSF absorption | Bloch et al. [38,42], Verkman et al. [98] |
AQP9 | Time-dependent increase; reduced after CSF drainage | Kusumo et al. [43] |
TGF-β1 | Elevated post-hemorrhage; promotes fibrosis via the Smad pathway | Zhan et al. [99] |
IL6 | Elevated in iNPH and post-hemorrhagic hydrocephalus; activates NF-κB | Lolansen et al. [13], Mehmedika-Suljić et al. [100] |
IL-1β | Elevated in iNPH; activates NF-κB | Lolansen et al. [13], Mehmedika-Suljić et al. [100] |
IL18 | Elevated post-hemorrhage; activates NF-κB | Lolansen et al. [101], Schmitz et al. [102] |
VEGF | Elevated in hydrocephalus; disrupts ependymal cells; promotes ventriculomegaly | Shim et al. [62] |
LRG | Elevated in iNPH; modulates TGF-Î2 and intersects with NF-κB | Lolansen et al. [13] |
IFN | Elevated; activates NF-κB; contributes to inflammation | Lolansen et al. [13] |
MCP-1 | Elevated in iNPH; suggests glial activation and chronic inflammation | Braun et al. [103], Yang et al. [104]. |
MBP | Elevated in iNPH; marker of myelin damage | Kaya et al. [105] |
MMP-7 | Elevated post-trauma; involved in ECM turnover | Harris et al. [76] |
MMP-9 | Elevated in post-trauma and inflammation; associated with ventriculomegaly | Okamoto et al. [106] |
MT1-MMP | Deficiency leads to hydrocephalus; essential for ependymal maturation | Jiang et al. [74] |
CXCL-1 | Limited decrease in post-hemorrhagic hydrocephalus | Habiyaremye et al. [107] |
NfL | Elevated in hydrocephalus; indicates axonal damage | Kaya et al. [105] |
TIMP-4 | Reported limited decrease in post-hemorrhagic hydrocephalus | Killer et al. [108] |
GFAP | Increased in reactive astrogliosis; linked to mechanical stress from ventriculomegaly | Kaya et al. [105] |
NF-κB | Activated in astrocytes/microglia; induces inflammation, fibrosis, and CSF hypersecretion | Xu et al. [109], Lattke et al. [54]. |
Study | Neuroimaging Marker | Differential Diagnosis | Neuroimaging Method |
---|---|---|---|
Mantovani et al. [118] | ACA, CA, Evans’ index | Alzheimer’s disease | MRI |
Ishii et al. [119] | CA, Evans’ index | Alzheimer’s disease | MRI |
Cagnin et al. [120] | CA (simplified), Evans’ index, parietal/frontal narrowing, empty sella, posterior cingulate narrowing | Dementia with Lewy bodies, Alzheimer’s disease | MRI |
Fallmar et al. [121] | Evans’ index, compression of (tight) high-convexity sulci, enlargement of Sylvian fissures, presence of focally enlarged sulci, width of temporal horns, callosal angle, periventricular hyperintensities, deep white matter hyperintensities, and ventricular roof bulgings | Vascular dementia, atypical parkinsonism | MRI |
Quattrone et al. [122] | Combination of Evans’ index and Callosal angle, DESH, MRHI, ventricular volume/intracranial volume ratio | Progressive supranuclear palsy. | MRI |
Savolainen et al. [123] | Extent and pattern of hippocampal atrophy and peri-hippocampal dilation | Alzheimer’s disease | MRI |
Ugga et al. [124] | Interpeduncular angle, MRHI | Progressive supranuclear palsy, | MRI |
Caligiuri et al. [125] | Microstructural changes in white matter | Progressive supranuclear palsy, Alzheimer’s disease | DTI |
Kang et al. [126] | Microstructural changes in white matter | Alzheimer’s disease | DTI |
Kim et al. [127] | Microstructural changes in white matter | Alzheimer’s disease, subcortical vascular dementia | DTI |
Horinek et al. [128] | Microstructural changes in white matter | Alzheimer’s disease | DTI |
Ivkovic et al. [129] | Microstructural changes in white matter | Dementia with Lewy bodies, Alzheimer’s disease, Parkinsons’ disease | DTI |
Marumoto et al. [130] | Microstructural changes in white matter | Parkinsons’ disease | DTI |
Younes et al. [131] | Microstructural changes in white matter | Alzheimer’s disease | DTI |
Quattrone et al. [132] | MRHI, automated ventricular volumetry | Progressive supranuclear palsy | MRI |
Kuroda et al. [133] | White matter lesion distribution | Alzheimer’s disease | MRI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roşu, A.-I.; Andrei, D.; Ghenciu, L.A.; Bolintineanu, S.L. Hydrocephalus: Molecular and Neuroimaging Biomarkers in Diagnosis and Management. Biomedicines 2025, 13, 1511. https://doi.org/10.3390/biomedicines13071511
Roşu A-I, Andrei D, Ghenciu LA, Bolintineanu SL. Hydrocephalus: Molecular and Neuroimaging Biomarkers in Diagnosis and Management. Biomedicines. 2025; 13(7):1511. https://doi.org/10.3390/biomedicines13071511
Chicago/Turabian StyleRoşu, Andrada-Iasmina, Diana Andrei, Laura Andreea Ghenciu, and Sorin Lucian Bolintineanu. 2025. "Hydrocephalus: Molecular and Neuroimaging Biomarkers in Diagnosis and Management" Biomedicines 13, no. 7: 1511. https://doi.org/10.3390/biomedicines13071511
APA StyleRoşu, A.-I., Andrei, D., Ghenciu, L. A., & Bolintineanu, S. L. (2025). Hydrocephalus: Molecular and Neuroimaging Biomarkers in Diagnosis and Management. Biomedicines, 13(7), 1511. https://doi.org/10.3390/biomedicines13071511