Potential Role of the Glycogen-Targeting Phosphatase Regulatory Subunit in Airway Hyperresponsiveness in Asthma
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Conditions
2.2. Allergic Asthma Model and Barometric Plethysmography
2.3. Bronchial Reactivity
2.4. Exclusion Criteria
2.5. Protein Identification
2.6. Antibody Reactivity
2.7. Protein Expression by Immunohistochemistry in Paraffin
2.8. Statistical Analysis
3. Results
3.1. Allergic Asthma Model in Guinea Pigs
3.2. Protein Identification by Mass Spectrometry and Conventional Electrophoresis
3.3. Localization and Expression of Proteins in Bronchial Smooth Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACN | Acetonitrile |
| AHR | Airway hyperresponsiveness |
| ASM | Airway smooth muscle |
| BI | Broncho-obstruction index |
| BLAST | Basic Local Alignment Search Tool |
| CPI-17 | 17-kDa protein kinase C-potentiated inhibitor |
| DAB | Diaminobenzidine |
| DTT | Dithiothreitol |
| H&E | Hematoxylin and eosin |
| MLC | Myosin light chain |
| MLC17 | Myosin light chain 17 kDa |
| MLC20 | Myosin light chain 20 kDa |
| MLCK | Myosin light chain kinase |
| MLCP | Myosin light chain phosphatase |
| MYPT1 | Myosin phosphatase target subunit 1 |
| MYPT1-Thr696 | MYPT1 phosphorylated at threonine 696 |
| MYPT1-Thr850 | MYPT1 phosphorylated at threonine 850 |
| NCBI | National Center for Biotechnology Information |
| OVA | Ovalbumin |
| PD200 | Provocative dose 200% |
| PHI-1 | Phosphatase holoenzyme inhibitor-1 |
| PP1c | Protein serine/threonine phosphatase 1 catalytic subunit |
| RG1 | Regulatory subunit of glycogen-targeted phosphatase 1 |
| ROCK1 | Rho-associated kinase 1 |
| ROCK2 | Rho-associated kinase 2 |
| TBS-Tween | Tris-buffered saline with Tween 20 |
| Thr | Threonine |
References
- Xie, C.; Yang, J.; Gul, A.; Li, Y.; Zhang, R.; Yalikun, M.; Lv, X.; Lin, Y.; Luo, Q.; Gao, H. Immunologic aspects of asthma: From molecular mechanisms to disease pathophysiology and clinical translation. Front. Immunol. 2024, 15, 1478624. [Google Scholar] [CrossRef]
- Reddel, H.K.; Bacharier, L.B.; Bateman, E.D.; Brightling, C.E.; Brusselle, G.G.; Buhl, R.; Cruz, A.A.; Duijts, L.; Drazen, J.M.; FitzGerald, J.M.; et al. Global Initiative for Asthma Strategy 2021: Executive summary and rationale for key changes. Eur. Respir. J. 2022, 59, 2102730. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Santos, M.D.; Álvarez-González, M.; Estrada-Soto, S.; Bazán-Perkins, B. Regulation of Myosin Light-Chain Phosphatase Activity to Generate Airway Smooth Muscle Hypercontractility. Front. Physiol. 2020, 11, 501071. [Google Scholar] [CrossRef]
- MacDonald, J.A.; Walsh, M.P. Regulation of Smooth Muscle Myosin Light Chain Phosphatase by Multisite Phosphorylation of the Myosin Targeting Subunit, MYPT1. Cardiovasc. Hematol. Disord. Drug Targets 2018, 18, 4–13. [Google Scholar] [CrossRef]
- Chang, A.N.; Gao, N.; Liu, Z.; Huang, J.; Nairn, A.C.; Kamm, K.E.; Stull, J.T. The dominant protein phosphatase PP1c isoform in smooth muscle cells, PP1cβ, is essential for smooth muscle contraction. J. Biol. Chem. 2018, 293, 16677. [Google Scholar] [CrossRef]
- Lubelsky, Y.; Shaul, Y. Recruitment of the protein phosphatase-1 catalytic subunit to promoters by the dual-function transcription factor RFX1. Biochem. Biophys. Res. Commun. 2019, 509, 1015–1020. [Google Scholar] [CrossRef]
- Bertolotti, A. The split protein phosphatase system. Biochem. J. 2018, 475, 3707–3723. [Google Scholar] [CrossRef]
- Egloff, M.P.; Johnson, D.F.; Moorhead, G.; Cohen, P.T.; Cohen, P.; Barford, D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997, 16, 1876–1887. [Google Scholar] [CrossRef] [PubMed]
- Dippold, R.P.; Fisher, S.A. Myosin phosphatase isoforms as determinants of smooth muscle contractile function and calcium sensitivity of force production. Microcirculation 2014, 21, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Ito, M.; Miyahara, M.; Ichikawa, K.; Okubo, S.; Konishi, T.; Naka, M.; Tanaka, T.; Hirano, K.; Hartshorne, D.J.; et al. Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J. Biol. Chem. 1994, 269, 30407–30411. [Google Scholar] [CrossRef]
- Haystead, C.M.M.; Gailly, P.; Somlyo, A.P.; Somlyo Av Haystead, T.A.J. Molecular cloning and functional expression of a recombinant 72.5 kDa fragment of the 110 kDa regulatory subunit of smooth muscle protein phosphatase 1M. FEBS Lett. 1995, 377, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Derkach, D.N.; Hirano, M.; Nishimura, J.; Takahashi, S.; Kanaide, H. Transduction of the N-Terminal fragments of MYPT1 enhances myofilament Ca2+ sensitivity in an intact coronary artery. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 464–469. [Google Scholar] [CrossRef]
- Amrani, Y. Airway smooth muscle modulation and airway hyper-responsiveness in asthma: New cellular and molecular paradigms. Expert Rev. Clin. Immunol. 2006, 2, 353–364. [Google Scholar] [CrossRef]
- Ojiaku, C.A.; Cao, G.; Zhu, W.; Yoo, E.J.; Shumyatcher, M.; Himes, B.E.; An, S.S.; Panettieri, R.A., Jr. TGF-β1 evokes human airway smooth muscle cell shortening and hyperresponsiveness via Smad3. Am. J. Respir. Cell Mol. Biol. 2018, 58, 575–584. [Google Scholar] [CrossRef]
- Erle, D.J.; Sheppard, D. Cytokine-induced molecular responses in airway smooth muscle cells inform genome-wide association studies of asthma. Genome Med. 2020, 12, 25. [Google Scholar]
- Zhang, W.; Bhetwal, B.P.; Gunst, S.J. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J. Physiol. 2018, 596, 3617. [Google Scholar] [CrossRef]
- Álvarez-Santos, M.; Carbajal, V.; Tellez-Jiménez, O.; Martínez-Cordero, E.; Ruiz, V.; Hernández-Pando, R.; Lascurain, R.; Santibañez-Salgado, A.; Bazan-Perkins, B. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation. J. Cell. Biochem. 2016, 117, 2385–2396. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Technical Specifications for the Production, Care, and Use of Laboratory Animals. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA): México City, Mexico, 1999.
- NOM-087-ECOL-SSA1-2002; Environmental Health—Guidelines for the Management of Hazardous Biological Waste. Secretaría de Salud: México City, Mexico, 2002.
- Campos, M.G.; Toxqui, E.; Tortoriello, J.; Oropeza, M.V.; Ponce, H.; Vargas, M.H.; Montaño, L.M. Galphimia glauca organic fraction antagonizes LTD(4)-induced contraction in guinea pig airways. J. Ethnopharmacol. 2001, 74, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ramírez, P.; Campos, M.G.; Martínez-Cordero, E.; Bazán-Perkins, B.; García-Zepeda, E. Antigen-induced airway hyperresponsiveness in absence of broncho-obstruction in sensitized guinea pigs. Exp. Lung Res. 2013, 39, 136–145. [Google Scholar] [CrossRef]
- Hamelmann, E.; Schwarze, J.; Takeda, K.; Oshiba, A.; Larsen, G.L.; Irvin, C.G.; Gelfand, E.W. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit. Care Med. 1997, 156, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Vargas, M.H.; Sommer, B.; Bazán-Perkins, B.; Montaño, L.M. Airway responsiveness measured by barometric plethysmography in guinea pigs. Vet. Res. Commun. 2010, 34, 589–596. [Google Scholar] [CrossRef]
- Bazán-Perkins, B.; Vargas, M.H.; Sánchez-Guerrero, E.; Chávez, J.; Montaño, L.M. Spontaneous changes in guinea-pig respiratory pattern during barometric plethysmography: Role of catecholamines and nitric oxide. Exp. Physiol. 2004, 89, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-González, M.; Flores-Flores, A.; Carbajal-Salinas, V.; Bazán-Perkins, B. Altered actin isoforms expression and enhanced airway responsiveness in asthma: The crucial role of β-cytoplasmic actin. Front. Physiol. 2025, 16, 1627443. [Google Scholar] [CrossRef]
- Álvarez-González, M.; Pacheco-Alba, I.; Moreno-Álvarez, P.; Rogel-Velasco, L.; Guerrero-Clorio, S.; Flores-Flores, A.; Téllez-Araiza, M.; Arellano-García, J.; Quevedo-Razo, A.; Flores-Martínez, A.; et al. Phenotypes of antigen-induced responses in guinea pigs: Beyond the asthma model. Mol. Immunol. 2025, 179, 1–8. [Google Scholar] [CrossRef]
- Pacheco-Alba, I.; Alvarez-González, M. Physiological and immunological aspects of asthma: The guinea pig (Cavia porcellus) as a model of allergic asthma. Lab. Anim. Res. 2025, 41, 22. [Google Scholar] [CrossRef]
- Usmani, O.S.; Singh, D.; Spinola, M.; Bizzi, A.; Barnes, P.J. The prevalence of small airways disease in adult asthma: A systematic literature review. Respir. Med. 2016, 116, 19–27. [Google Scholar] [CrossRef]
- Stenberg, H.; Chan, R.; Abd-Elaziz, K.; Pelgröm, A.; Lammering, K.; Kuijper-De Haan, G.; Weersink, E.; Lutter, R.; Zwinderman, A.H.; de Jongh, F.; et al. Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge. J. Clin. Med. 2025, 14, 906. [Google Scholar] [CrossRef] [PubMed]
- Zarazúa, A.; González-Arenas, A.; Ramírez-Vélez, G.; Bazán-Perkins, B.; Guerra-Araiza, C.; Campos-Lara, M.G. Sexual dimorphism in the regulation of estrogen, pro-gesterone, and androgen receptors by sex steroids in rat airway smooth muscle cells. Int. J. Endocrinol. 2016, 2016, 8423192. [Google Scholar] [CrossRef]
- Zhao, S.; Lee, E.Y. A protein phosphatase-1-binding motif identified by the panning of a random peptide display library. J. Biol. Chem. 1997, 272, 28368–28372. [Google Scholar] [CrossRef]
- Graham, T.E.; Yuan, Z.; Hill, A.K.; Wilson, R.J. The regulation of muscle glycogen: The granule and its proteins. Acta Physiol. 2010, 199, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.B.; Zhai, L.; Ravikumar, B.; Choi, C.S.; Snaar, J.E.; McGuire, A.C.; Wou, S.E.; Medi-na-Gomez, G.; Kim, S.; Bock, C.B.; et al. A prevalent variant in PPP1R3A impairs glycogen synthesis and reduces muscle glycogen content in humans and mice. PLoS Med. 2008, 5, e27. [Google Scholar] [CrossRef]
- Gailly, P.; Wu, X.; Haystead, T.A.J.; Somlyo, A.P.; Cohen, P.T.W.; Cohen, P.; Somlyo, A.V. Regions of the 110-kDa Regulatory Subunit M110 Required for Regulation of Myosin-Light-Chain-Phosphatase Activity in Smooth Muscle. Eur. J. Biochem. 1996, 239, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.F.; Moorhead, G.; Caudwell, F.B.; Cohen, P.; Chen, Y.H.; Chen, M.X.; Cohen, P.T.W. Identification of Protein-Phosphatase-1-Binding Domains on the Glycogen and Myofibrillar Targetting Subunits. Eur. J. Biochem. 1996, 239, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Korrodi-Gregório, L.; Esteves, S.L.C.; Fardilha, M. Protein phosphatase 1 catalytic isoforms: Specificity toward interacting proteins. Transl. Res. 2014, 164, 366–391. [Google Scholar] [CrossRef]
- Scotto-Lavino, E.; Garcia-Diaz, M.; Du, G.; Frohman, M.A. Basis for the isoform-specific interaction of myosin phosphatase subunits protein phosphatase 1c beta and myosin phosphatase targeting subunit 1. J. Biol. Chem. 2010, 285, 6419–6424. [Google Scholar] [CrossRef]
- Kiss, A.; Erdödi, F.; Lontay, B. Myosin phosphatase: Unexpected functions of a long-known enzyme. BBA-Mol. Cell Res. 2019, 1866, 2–15. [Google Scholar] [CrossRef]
- Takai, A.; Eto, M.; Hirano, K.; Takeya, K.; Wakimoto, T.; Watanabe, M. Protein phosphatases 1 and 2A and their naturally occurring inhibitors: Current topics in smooth muscle physiology and chemical biology. J. Physiol. Sci. 2017, 68, 1–17. [Google Scholar] [CrossRef]
- Velasco, G.; Armstrong, C.; Morrice, N.; Frame, S.; Cohen, P. Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1M at Thr850 induces its dissociation from myosin. FEBS Lett. 2002, 527, 101–104. [Google Scholar] [CrossRef]
- Chen, C.P.; Chen, X.; Qiao, Y.N.; Wang, P.; He, W.Q.; Zhang, C.H.; Zhao, W.; Gao, Y.Q.; Chen, C.; Tao, T.; et al. In vivo roles for myosin phos-phatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction. J. Physiol. 2015, 593, 681–700. [Google Scholar] [CrossRef]
- Zhang, Y.; Saradna, A.; Ratan, R.; Ke, X.; Tu, W.; Do, D.C.; Hu, C.; Gao, P. RhoA/Rho-kinases in asthma: From pathogenesis to therapeutic targets. Clin. Transl. Immunol. 2020, 9, e1134. [Google Scholar] [CrossRef] [PubMed]
- Julian, L.; Olson, M.F. Rho-associated coiled-coil containing kinases (ROCK): Structure, regulation, and functions. Small GTPases 2014, 5, e29846. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Li, W.; Stephens, N.L. Heterogeneity of airway smooth muscle at tissue and cellu-lar levels. Can. J. Physiol. Pharmacol. 1997, 75, 930–935. [Google Scholar] [CrossRef] [PubMed]




| Molecular Weight | Control | Asthma Model |
|---|---|---|
| 130 kDa | Collagen α-1 (COLA1) | Collagen α-1 (COLA1) |
| Collagen α-2 (COLA2) | ||
| 120 kDa | E3 ubiquitin-protein ligase (NHLRC1) | Polypeptide N-acetylgalactosaminyltransferase 18 (GALNT18) |
| U3 small nucleolar ribonucleoprotein (IMP) | ||
| 75 kDa | Collagen α-1 (COLA1) | Collagen α-1 (COLA1) |
| Glycogen-targeted protein phosphatase type 1 regulatory subunit (RG1) | ||
| FAM3A protein precursor (FAM3A) | ||
| SH3 adapter protein (SPIN90) | ||
| Secretory phospholipase A2 Group IID (PLAIIG4A) | ||
| Actin-binding LIM protein 2 (ABLIM2) | ||
| 50 kDa | Desmin (DES) | |
| 37 kDa | Annexin A5 (ANXA5) | Annexin A5 (ANXA5) |
| Malate dehydrogenase, cytoplasmic (MDH1) | Tropomyosin α-1 (TPM1) | |
| Tropomyosin β (TPM2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-González, M.; Eslava-De Jesús, E.; Bazan-Perkins, B. Potential Role of the Glycogen-Targeting Phosphatase Regulatory Subunit in Airway Hyperresponsiveness in Asthma. Biomedicines 2025, 13, 3111. https://doi.org/10.3390/biomedicines13123111
Alvarez-González M, Eslava-De Jesús E, Bazan-Perkins B. Potential Role of the Glycogen-Targeting Phosphatase Regulatory Subunit in Airway Hyperresponsiveness in Asthma. Biomedicines. 2025; 13(12):3111. https://doi.org/10.3390/biomedicines13123111
Chicago/Turabian StyleAlvarez-González, Marisol, Elizabeth Eslava-De Jesús, and Blanca Bazan-Perkins. 2025. "Potential Role of the Glycogen-Targeting Phosphatase Regulatory Subunit in Airway Hyperresponsiveness in Asthma" Biomedicines 13, no. 12: 3111. https://doi.org/10.3390/biomedicines13123111
APA StyleAlvarez-González, M., Eslava-De Jesús, E., & Bazan-Perkins, B. (2025). Potential Role of the Glycogen-Targeting Phosphatase Regulatory Subunit in Airway Hyperresponsiveness in Asthma. Biomedicines, 13(12), 3111. https://doi.org/10.3390/biomedicines13123111

