You are currently viewing a new version of our website. To view the old version click .
Biomedicines
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

12 December 2025

The Impact of Mixing Techniques on PMMA Bone Cement Subjected to Two Different Cooling Techniques: A Pilot Study of Thermal Management Strategies in Orthopedic Applications

,
,
,
and
1
Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
2
Department M4 Clinical and Surgical Sciences, Orthopedics and Traumatology I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
3
Department of Orthopaedics and Traumatology, Clinical County Hospital of Mureș, 540139 Targu Mures, Romania
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Biomaterials for Bone Regeneration: 2nd Edition

Abstract

Objectives: Polymethyl methacrylate (PMMA) bone cement is vital for prosthetic fixation in orthopedic surgery, yet its exothermic polymerization can exceed 80 °C, surpassing the 50 °C threshold for thermal osteonecrosis, risking implant failure. This pilot study assesses two cooling strategies—precooling cement components and saline irrigation on the polymerization temperature and compressive strength of antibiotic-loaded PMMA, comparing hand mixing (HM) and vacuum mixing (VM) to optimize thermal management while preserving mechanical integrity in controlled settings relevant to orthopedic applications. Methods: Antibiotic-loaded Simplex bone cement (Stryker, Kalamazoo, MI, USA) was prepared using HM and VM, per ISO 5833. Each batch was divided into three groups: control, precooled (components at 6 °C overnight), and saline irrigation (8 °C saline during setting). Each group included 20 cylindrical samples (1.5 cm × 3 cm), cured for 24 h. Core temperatures were monitored with embedded thermometers, and compressive strength was measured in megapascals (MPa) using a hydraulic press (C092-06, MATEST). Welch’s t-test was used for statistical analysis. Results: HM controls reached 76.2 °C, precooled 63.6 °C, and saline 66 °C; VM controls hit 71.8 °C, precooled 58.8 °C, and saline 63.6 °C. HM strengths were 16–17 MPa, with precooling reducing to 16.49 MPa (p = 0.051) and saline maintaining 17.07 MPa (p = 0.820). VM strengths were 76–80 MPa, with precooling at 78.45 MPa (p < 0.001) and saline at 76.77 MPa (p = 0.010). Failure modes varied: controls (uniform cracking), precooled (shear failure), and saline (mixed cracking/crumbling). Conclusions: Precooling significantly lowers temperatures but compromises strength in HM samples, limiting its use in load-bearing applications. Saline irrigation offers moderate thermal control while preserving mechanics, particularly in HM, suggesting a viable strategy for reducing thermal necrosis risk. VM ensures superior strength, supporting safe cooling application.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.