Target Discovery in Head-and-Neck Squamous Cell Carcinoma: Genome-Wide CRISPR Screens Illuminate Therapeutic Resistance and Actionable Dependencies
Abstract
1. Introduction
2. Research Strategy
3. Results
3.1. Essential Genes in OSCC/HNSCC Identified via Genome-Wide CRISPR Knockout
3.2. Genes Implicated in Cisplatin/Radiation Resistance from Genome-Wide CRISPR Screens
3.3. Genes Related to Pharmacological Inhibitors and Involved in Oncolytic Vaccines from Genome-Wide CRISPR Screens
4. Future Directions
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed]
- Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.R.; Cupissol, D.; et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef]
- William, W.N., Jr.; Kim, E.S.; Herbst, R.S. Cetuximab therapy for patients with advanced squamous cell carcinomas of the head and neck. Nat. Clin. Pract. Oncol. 2009, 6, 132–133. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Larkins, E.; Blumenthal, G.M.; Yuan, W.; He, K.; Sridhara, R.; Subramaniam, S.; Zhao, H.; Liu, C.; Yu, J.; Goldberg, K.B.; et al. FDA Approval Summary: Pembrolizumab for the Treatment of Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma with Disease Progression on or After Platinum-Containing Chemotherapy. Oncologist 2017, 22, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Al-Ouqaili, M.T.S.; Ahmad, A.; Jwair, N.A.; Al-Marzooq, F. Harnessing bacterial immunity: CRISPR-Cas system as a versatile tool in combating pathogens and revolutionizing medicine. Front. Cell Infect. Microbiol. 2025, 15, 1588446. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, S.; Zhang, K.; Sun, X.; Lin, W.; Wang, C.; Lin, S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024, 12, 118. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Chehelgerdi, M.; Khorramian-Ghahfarokhi, M.; Shafieizadeh, M.; Mahmoudi, E.; Eskandari, F.; Rashidi, M.; Arshi, A.; Mokhtari-Farsani, A. Correction: Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy. Mol. Cancer 2024, 23, 43. [Google Scholar] [CrossRef]
- Brezgin, S.; Kostyusheva, A.; Kostyushev, D.; Chulanov, V. Dead Cas Systems: Types, Principles, and Applications. Int. J. Mol. Sci. 2019, 20, 6041. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Yan, Q.; Cui, J.; Chen, Y.; Ruan, S.; Yang, J.; Wu, Z.; Han, M.; Huang, S.; et al. Genome-wide CRISPR/Cas9 screening for drug resistance in tumors. Front. Pharmacol. 2023, 14, 1284610. [Google Scholar] [CrossRef]
- Morgens, D.W.; Deans, R.M.; Li, A.; Bassik, M.C. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 2016, 34, 634–636. [Google Scholar] [CrossRef]
- Chai, A.W.Y.; Yee, P.S.; Price, S.; Yee, S.M.; Lee, H.M.; Tiong, V.K.; Goncalves, E.; Behan, F.M.; Bateson, J.; Gilbert, J.; et al. Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway. Elife 2020, 9, e57761. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, S.; Ke, L.; Zhang, L.; Li, D.; Liang, J.; Narita, Y.; Hou, I.; Chen, C.H.; Wang, L.; et al. Genome-wide CRISPR-based gene knockout screens reveal cellular factors and pathways essential for nasopharyngeal carcinoma. J. Biol. Chem. 2019, 294, 9734–9745. [Google Scholar] [CrossRef]
- Li, C.; Peng, W.; Zhong, Z.; Zhang, C.; Wang, X.; Qin, R.; Lei, Q.; Lv, J.; Liu, F.; Zhao, Y.; et al. CRISPR/Cas9 library screening reveals that STK19 has synergistic antitumor effects when combined with cisplatin on tongue squamous cell carcinoma. J. Transl. Med. 2025, 23, 1142. [Google Scholar] [CrossRef]
- Ludwig, M.; Birkeland, A.; Smith, J.; Gensterblum-Miller, E.; Zhai, J.; Kulkarni, A.; Jiang, H.; Brenner, C. A Genome Wide CRISPR Profiling Approach Identifies Mechanisms of Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, G.; Shen, M.; Li, J.; Liu, K.; Liu, M.; Shi, S.; Yang, D.; Chen, W.; Chen, S.; et al. Genome-scale CRISPR-Cas9 knockout screening in nasopharyngeal carcinoma for radiosensitive and radioresistant genes. Transl. Oncol. 2023, 30, 101625. [Google Scholar] [CrossRef]
- Goto, Y.; Koshizuka, K.; Ando, T.; Izumi, H.; Wu, X.; Sato, K.; Ishikawa, T.; Ford, K.; Feng, X.; Wang, Z.; et al. A Kinome-Wide Synthetic Lethal CRISPR/Cas9 Screen Reveals That mTOR Inhibition Prevents Adaptive Resistance to CDK4/CDK6 Blockade in HNSCC. Cancer Res. Commun. 2024, 4, 1850–1862. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ludwig, M.L.; Kulkarni, A.; Birkeland, A.C.; Michmerhuizen, N.L.; Gensterblum-Miller, E.; Zhai, J.; Jiang, H.; Swiecicki, P.; Buchakjian, M.; et al. CRISPR Screens Identify PIK3C2A as a Novel Mediator of EGFR Inhibitor Resistance in Head and Neck Squamous Cell Carcinoma. Head Neck 2025. [Google Scholar] [CrossRef] [PubMed]
- Allevato, M.M.; Trinh, S.; Koshizuka, K.; Nachmanson, D.; Nguyen, T.C.; Yokoyama, Y.; Wu, X.; Andres, A.; Wang, Z.; Watrous, J.; et al. A genome-wide CRISPR screen reveals that antagonism of glutamine metabolism sensitizes head and neck squamous cell carcinoma to ferroptotic cell death. Cancer Lett. 2024, 598, 217089. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Zhang, Q.; Li, R.; Wei, R.; Zhao, J.; Tan, J.; Zhang, H.; Qiao, W. CRISPR/Cas9 screening identifies SUV39H2 as a key regulator of oHSV-1 resistance in oral squamous cell carcinoma. Cell Death Discov. 2025, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Behan, F.M.; Iorio, F.; Picco, G.; Goncalves, E.; Beaver, C.M.; Migliardi, G.; Santos, R.; Rao, Y.; Sassi, F.; Pinnelli, M.; et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 2019, 568, 511–516. [Google Scholar] [CrossRef]
- Vincent-Chong, V.K. Editorial of Special Issue “Oral Cancer: From Pathophysiology to Novel Therapeutic Approaches”. Biomedicines 2023, 11, 2748. [Google Scholar] [CrossRef]
- Zhong, C.; Jiang, W.J.; Yao, Y.; Li, Z.; Li, Y.; Wang, S.; Wang, X.; Zhu, W.; Wu, S.; Wang, J.; et al. CRISPR screens reveal convergent targeting strategies against evolutionarily distinct chemoresistance in cancer. Nat. Commun. 2024, 15, 5502. [Google Scholar] [CrossRef]
- Zou, W.; Han, Z.; Wang, Z.; Liu, Q. Targeting glutamine metabolism as a potential target for cancer treatment. J. Exp. Clin. Cancer Res. 2025, 44, 180. [Google Scholar] [CrossRef] [PubMed]
- Uppaluri, R.; Haddad, R.I.; Tao, Y.; Le Tourneau, C.; Lee, N.Y.; Westra, W.; Chernock, R.; Tahara, M.; Harrington, K.J.; Klochikhin, A.L.; et al. Neoadjuvant and Adjuvant Pembrolizumab in Locally Advanced Head and Neck Cancer. N. Engl. J. Med. 2025, 393, 37–50. [Google Scholar] [CrossRef]
- Dai, Y.; Yao, Q.; Wang, Z.; Diao, P.; Wang, D.; Yan, E.; Wang, Y. Development of a novel prognostic signature derived from essential genes in head and neck squamous cell carcinoma. J. Oral. Pathol. Med. 2023, 52, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.L.; Li, P.; Yao, X.R.; Xiao, W.T.; Ren, X.; He, J.Y. Deciphering a proliferation-essential gene signature based on CRISPR-Cas9 screening to predict prognosis and characterize the immune microenvironment in HNSCC. BMC Cancer 2025, 25, 756. [Google Scholar] [CrossRef]
- Fu, C.; Saddawi-Konefka, R.; Chinai, J.M.; Kim, S.Y.; Kammula, A.V.; Perera, J.J.; Jiang, A.; Tiwari, P.; Kistler, E.N.; Tang, S.; et al. In vivo CRISPR screening in head and neck cancer reveals Uchl5 as an immunotherapy target. Nat. Commun. 2025, 16, 8572. [Google Scholar] [CrossRef]
- Vu, K.; Gunti, S.; Viswanathan, R.; Nandal, A.; Larkin, R.; Cho, S.; Zou, J.; Ramolia, S.; Hoke, A.T.K.; Barbosa, S.M.; et al. In vivo CRISPR screening identifies NF1/RASA1/TP53 co-mutations and downstream MEK signaling as a common key mechanism of sinonasal tumorigenesis. bioRxiv 2025. [Google Scholar] [CrossRef]
- Lo, Y.H.; Horn, H.T.; Huang, M.F.; Yu, W.C.; Young, C.M.; Liu, Q.; Tomaske, M.; Towers, M.; Dominguez, A.; Bassik, M.C.; et al. Large-scale CRISPR screening in primary human 3D gastric organoids enables comprehensive dissection of gene-drug interactions. Nat. Commun. 2025, 16, 7566. [Google Scholar] [CrossRef]
- Michels, B.E.; Mosa, M.H.; Streibl, B.I.; Zhan, T.; Menche, C.; Abou-El-Ardat, K.; Darvishi, T.; Czlonka, E.; Wagner, S.; Winter, J.; et al. Pooled In Vitro and In Vivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids. Cell Stem Cell 2020, 26, 782–792 e787. [Google Scholar] [CrossRef]
- Madorsky Rowdo, F.P.; Martini, R.; Ackermann, S.E.; Tang, C.P.; Tranquille, M.; Irizarry, A.; Us, I.; Alawa, O.; Moyer, J.E.; Sigouros, M.; et al. Kinome-Focused CRISPR-Cas9 Screens in African Ancestry Patient-Derived Breast Cancer Organoids Identify Essential Kinases and Synergy of EGFR and FGFR1 Inhibition. Cancer Res. 2025, 85, 551–566. [Google Scholar] [CrossRef] [PubMed]
- Castells-Roca, L.; Tejero, E.; Rodriguez-Santiago, B.; Surralles, J. CRISPR Screens in Synthetic Lethality and Combinatorial Therapies for Cancer. Cancers 2021, 13, 1591. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tie, Y.; Alu, A.; Ma, X.; Shi, H. Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Signal Transduct. Target. Ther. 2023, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Colevas, A.D.; Cmelak, A.J.; Pfister, D.G.; Spencer, S.; Adkins, D.; Birkeland, A.C.; Brizel, D.M.; Busse, P.M.; Caudell, J.J.; Durm, G.; et al. NCCN Guidelines(R) Insights: Head and Neck Cancers, Version 2.2025. J. Natl. Compr. Canc Netw. 2025, 23, 2–11. [Google Scholar] [CrossRef]

| Study | Cell Lines | Platform | Treatment | Screen Context | Key Dependency or Resistance Genes Identified | Findings | Limitations |
|---|---|---|---|---|---|---|---|
| Chai et al. [13] | ORL48, ORL115, ORL136, ORL150, ORL153, ORL156, ORL166, ORL174, ORL188, ORL195, ORL204, ORL207, ORL214, ORL215 | Human Improved Genome-wide Knockout CRISPR Library v1 (Addgene #67989), 90,709 sgRNAs targeting 18,010 genes; Coverage: 100×; MOI: 0.3 | Puromycin (2 µg/mL) for 3–4 days post-transduction; cells harvested on day 18 for genomic DNA extraction. | Baseline (proliferation essentiality) | YAP1, WWTR1 (TAZ), and TEAD1 |
|
|
| Wang et al. [14] | C666-1, NP69 | Brunello human-genome-wide CRISPR knockout library (Addgene #73178), targeting 19,114 genes; Coverage: 500×; MOI: 0.3 | Puromycin (3 µg/mL) for selection. Cells cultured for 28 days and then harvested | Baseline (dependency screen) | KAT7/BRD1/MEAF6/BRPF1/KAT8, NF-κB signaling (CHUK/IKBKB/IKBKG), de novo purine synthesis (ADSL/GART/PAICS/ATIC), linear ubiquitination (RNF31-RBCK1-SHARPIN and OTULIN), and p53 control (MDM2); |
|
|
| Li et al. [15] | TSCCA, CAL27 | Human kinase-focused CRISPR library (custom, 5171 sgRNAs targeting 508 kinases; 10 sgRNAs/gene); MOI: 0.3 | Puromycin (1 µg/mL) × 7 days, treated with cisplatin (0.125–1 µM) for 48 h | Treatment-Perturbed (cisplatin, 0.125–1 µM) | STK19 |
|
|
| Ludwig et al. [16] | UMSCC-49 | Human GeCKO v2 pooled CRISPR knockout library (Addgene #1000000048, library v2A); Coverage: ≥300×; MOI: 0.3 | Puromycin for 7 days. Cells expanded and treated with cisplatin 0.125 µM daily for 1 or 2 weeks prior to genomic DNA isolation. | Treatment-Perturbed (cisplatin, 0.125 µM) | NOTCH1, SSPO, NCOR1, MARK2, MYCBP, SSPO, RAC1, CCNE1, ULK1, RAC1, CDK5R1, VLDLR, CCNE1, RBL1, DHFR, E2F6, CDK5R1, VLDLR, and MAP2K7 |
|
|
| Zhou et al. [17] | C666-1 | (GeCKO v2.0 pooled library (Shanghai Gikco Co., LTD), targeting 19,050 genes + 1864 miRNAs; MOI: 3 | Puromycin 3 µg/mL; 2 Gy radiation for 7 and 14 days. | Treatment-Perturbed (Radiation 2 Gy × 7–14 days) | FBLN5, FAM3C, MUS81, DNAJC17, CALD1, TOMM20, SNX22, PSIP1, TLN1, CDKN2AIP, and SP1 |
|
|
| Goto et al. [18] | CAL27 | Human kinome CRISPR pooled library (Brunello, RRID: Addgene_75312); Coverage: 650×; MOI: 0.3. | INK128 (10 nM) treatment until ~20 population doublings. Puromycin selection not specified | Treatment-Perturbed (mTOR inhibitor INK128 10 nM) | CDK4/6 signaling |
| N/A |
| Qiu et al. [21] | SCC15 | Human GeCKO v2 CRISPR library (A + B sets, Addgene #1000000049), 122,411 sgRNAs targeting 19,052 genes + 1864 miRNAs; Coverage: 500×; MOI: 0.3 | Puromycin (2 µg/mL × 7 days). Cells exposed to oHSV-1 for 48 h (control) and 72 h (treatment) for positive/negative selection | Treatment-Perturbed (oHSV-1 infection) | SUV39H2 |
| N/A |
| Allevato et al. [20] | CAL33 | Brunello whole-genome CRISPR library (Addgene #73178), 76,441 sgRNAs targeting 19,114 genes + 1000 non-targeting controls; Coverage: 300×; MOI: 0.5 | Vehicle or DON (0.25 µM) treatment until ~18 population doublings. Puromycin selection not specified | Treatment-Perturbed (Glutamine antagonist DON) | GPX4 |
| N/A |
| Wang et al. [19] | UMSCC-49, UMSCC-108, UMSCC-97 | Human GeCKO v1 (Addgene #49535) or v2 (Addgene #52961) library and Human Kinase Lentiviral Pool (Sigma HKCRISPR); Coverage: 300×; MOI: 0.3 | Puromycin for 7 days. Treated with Erlotinib (1 µM) or Gefitinib (1 µM)—duration not specified | Treatment-Perturbed (EGFR inhibitor Erlotinib or Gefitinib 1 µM) | PIK3C2A |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincent-Chong, V.K. Target Discovery in Head-and-Neck Squamous Cell Carcinoma: Genome-Wide CRISPR Screens Illuminate Therapeutic Resistance and Actionable Dependencies. Biomedicines 2025, 13, 3012. https://doi.org/10.3390/biomedicines13123012
Vincent-Chong VK. Target Discovery in Head-and-Neck Squamous Cell Carcinoma: Genome-Wide CRISPR Screens Illuminate Therapeutic Resistance and Actionable Dependencies. Biomedicines. 2025; 13(12):3012. https://doi.org/10.3390/biomedicines13123012
Chicago/Turabian StyleVincent-Chong, Vui King. 2025. "Target Discovery in Head-and-Neck Squamous Cell Carcinoma: Genome-Wide CRISPR Screens Illuminate Therapeutic Resistance and Actionable Dependencies" Biomedicines 13, no. 12: 3012. https://doi.org/10.3390/biomedicines13123012
APA StyleVincent-Chong, V. K. (2025). Target Discovery in Head-and-Neck Squamous Cell Carcinoma: Genome-Wide CRISPR Screens Illuminate Therapeutic Resistance and Actionable Dependencies. Biomedicines, 13(12), 3012. https://doi.org/10.3390/biomedicines13123012

