Structure-Based Insights into TGR5 Activation by Natural Compounds: Therapeutic Implications and Emerging Strategies for Obesity Management
Abstract
1. Introduction
Compound | Type | Pharmacological Features | Clinical Stage | Ref. |
---|---|---|---|---|
INT-777 | Synthetic | cAMP–PKA–D2 activation High potency & selectivity; based on cholic acid (CA) scaffold | Preclinical | [21] |
18dia 2 | Synthetic derivative (BA derivative) | Lipophilic 3-epi-BA derivative; potent and TGR5selective; significantly increases cAMP and GLP-1 secretion in vitro compared to parent BA | Preclinical | [22] |
B1 | Synthetic derivative (CA derivative) | 258-fold higher TGR5 activity than CA; acts as a Positive Allosteric Modulator (PAM) via Thr131 Hbond; enhances Chenodeoxycholic Acid (CDCA) co-activation | Preclinical | [23] |
MN6 (22g) | Synthetic | Developed for T2DM Regulates glucose homeostasis and insulin sensitivity | Preclinical | [24] |
23(S)-m-LCA | Synthetic | Stereoselective C23-alkylation; enhances TGR5induced GLP-1 transcription | Preclinical | [25] |
INT-767 | Synthetic derivative (CDCA derivative) | Dual agonist (TGR5/FXR) Improved synthesis route; dual receptor targeting | Preclinical | [26] |
RO5527239 | Synthetic | Stimulates PYY and GLP-1 secretion via TGR5 Enhances gut hormone secretion; glucose stabilization | Preclinical | [27] |
Compound 4b | Synthetic | Strong TGR5 agonist using TMN scaffold Designed for dyslipidemia therapy | Preclinical | [28] |
SB-756050 | Synthetic | Increases GLP-1, potential for glucose control in T2DM First-in-human trial; tolerable, limited efficacy | Phase I/II clinical trial | [29] |
BAR502 | Gut-restricted synthetic | Intestinally targeted to avoid systemic side effects FXR/TGR5 dual action possible; under active development | Phase I clinical trial | [30] |
2. TGR5-Mediated Regulatory Pathways in Obesity
2.1. TGR5-Mediated Thermogenesis via the cAMP–PKA–D2 Pathway
2.2. TGR5 Promotes the Browning of WAT
2.3. TGR5-Mediated Regulation of Glucose Homeostasis and Insulin Sensitivity
3. Structural Mechanisms of TGR5 Activation
3.1. Orthosteric Binding of Bile Acids and Synthetic Agonists
3.2. Allosteric Site and Cooperative Modulation
3.3. Toggle Switch Mechanism
3.4. Gαs Binding Interface
4. Natural TGR5 Agonists: Metabolic Benefits and Mechanistic Insights
4.1. Oleanolic Acid (OA)
4.2. Curcumin
4.3. Betulinic Acid (BA)
4.4. Ursolic Acid (UA)
4.5. 5β-Scymnol and 5β-Scymnol Sulfate
4.6. Quinovic Acid (QA)
4.7. Obacunon
4.8. Nomilin
5. Natural Product Binding to TGR5: Docking Insights into Orthosteric and Allosteric Modulation
6. Emerging Strategies for TGR5-Directed Therapeutics
6.1. Gut-Restricted TGR5 Agonists
6.2. Allosteric and Biased Agonism
6.3. AI-Guided Optimization of Natural Product Scaffolds
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keitel, V.; Stindt, J.; Häussinger, D. Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb. Exp. Pharmacol. 2019, 256, 19–49. [Google Scholar] [PubMed]
- Chiang, J.Y.L.; Ferrell, J.M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G554–G573. [Google Scholar] [CrossRef]
- Maruyama, T.; Miyamoto, Y.; Nakamura, T.; Tamai, Y.; Okada, H.; Sugiyama, E.; Nakamura, T.; Itadani, H.; Tanaka, K. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 2002, 298, 714–719. [Google Scholar] [CrossRef]
- Thomas, C.; Pellicciari, R.; Pruzanski, M.; Auwerx, J.; Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008, 7, 678–693. [Google Scholar] [CrossRef] [PubMed]
- Katritch, V.; Cherezov, V.; Stevens, R.C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 531–556. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, Y.; Fujii, R.; Hosoya, M.; Harada, M.; Yoshida, H.; Miwa, M.; Fukusumi, S.; Habata, Y.; Itoh, T.; Shintani, Y.; et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 2003, 278, 9435–9440. [Google Scholar] [CrossRef]
- Lun, W.; Yan, Q.; Guo, X.; Zhou, M.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Mechanism of action of the bile acid receptor TGR5 in obesity. Acta Pharm. Sin. B 2024, 14, 468–491. [Google Scholar] [CrossRef]
- Guo, C.; Chen, W.D.; Wang, Y.D. TGR5, Not Only a Metabolic Regulator. Front. Physiol. 2016, 7, 646. [Google Scholar] [CrossRef]
- Thomas, C.; Gioiello, A.; Noriega, L.; Strehle, A.; Oury, J.; Rizzo, G.; Macchiarulo, A.; Yamamoto, H.; Mataki, C.; Pruzanski, M.; et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009, 10, 167–177. [Google Scholar] [CrossRef]
- Fan, M.; Wang, Y.; Jin, L.; Fang, Z.; Peng, J.; Tu, J.; Liu, Y.; Zhang, E.; Xu, S.; Liu, X.; et al. Bile Acid-Mediated Activation of Brown Fat Protects From Alcohol-Induced Steatosis and Liver Injury in Mice. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 809–826. [Google Scholar] [CrossRef] [PubMed]
- Donkers, J.M.; Roscam Abbing, R.L.P.; van de Graaf, S.F.J. Developments in bile salt based therapies: A critical overview. Biochem. Pharmacol. 2019, 161, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Fang, S. Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis. Lab. Anim. Res. 2018, 34, 140–146. [Google Scholar] [CrossRef]
- Harach, T.; Pols, T.W.; Nomura, M.; Maida, A.; Watanabe, M.; Auwerx, J.; Schoonjans, K. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci. Rep. 2012, 2, 430. [Google Scholar] [CrossRef]
- Castellanos-Jankiewicz, A.; Guzmán-Quevedo, O.; Fénelon, V.S.; Zizzari, P.; Quarta, C.; Bellocchio, L.; Tailleux, A.; Charton, J.; Fernandois, D.; Henricsson, M.; et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021, 33, 1483–1492.e10. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, X.; Chen, D.; Yu, B.; Zheng, P.; Luo, Y.; He, J.; Huang, Z. Oleanolic acid inhibits appetite through the TGR5/cAMP signaling pathway. J. Nutr. Biochem. 2025, 138, 109844. [Google Scholar] [CrossRef]
- Jin, W.; Zheng, M.; Chen, Y.; Xiong, H. Update on the development of TGR5 agonists for human diseases. Eur. J. Med. Chem. 2024, 271, 116462. [Google Scholar] [CrossRef]
- Li, T.; Holmstrom, S.R.; Kir, S.; Umetani, M.; Schmidt, D.R.; Kliewer, S.A.; Mangelsdorf, D.J. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol. Endocrinol. 2011, 25, 1066–1071. [Google Scholar] [CrossRef]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed]
- Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res. 2021, 35, 4660–4702. [Google Scholar] [CrossRef]
- Beutler, J.A. Natural Products as a Foundation for Drug Discovery. Curr. Protoc. Pharmacol. 2019, 86, e67. [Google Scholar] [CrossRef]
- Pellicciari, R.; Gioiello, A.; Macchiarulo, A.; Thomas, C.; Rosatelli, E.; Natalini, B.; Sardella, R.; Pruzanski, M.; Roda, A.; Pastorini, E.; et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 2009, 52, 7958–7961. [Google Scholar] [CrossRef] [PubMed]
- Genet, C.; Strehle, A.; Schmidt, C.; Boudjelal, G.; Lobstein, A.; Schoonjans, K.; Souchet, M.; Auwerx, J.; Saladin, R.; Wagner, A. Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: Potential impact in diabetes. J. Med. Chem. 2010, 53, 178–190. [Google Scholar] [CrossRef]
- Qian, M.; Luo, Z.; Hou, W.; Sun, J.; Lu, X.; Zhang, Q.; Wu, Y.; Xue, C.; Zhao, S.; Chen, X. Discovery of novel cholic acid derivatives as highly potent agonists for G protein-coupled bile acid receptor. Bioorg. Chem. 2022, 120, 105588. [Google Scholar] [CrossRef]
- Huang, S.; Ma, S.; Ning, M.; Yang, W.; Ye, Y.; Zhang, L.; Shen, J.; Leng, Y. TGR5 agonist ameliorates insulin resistance in the skeletal muscles and improves glucose homeostasis in diabetic mice. Metabolism 2019, 99, 45–56. [Google Scholar] [CrossRef]
- Yu, D.D.; Sousa, K.M.; Mattern, D.L.; Wagner, J.; Fu, X.; Vaidehi, N.; Forman, B.M.; Huang, W. Stereoselective synthesis, biological evaluation, and modeling of novel bile acid-derived G-protein coupled bile acid receptor 1 (GP-BAR1, TGR5) agonists. Bioorg. Med. Chem. 2015, 23, 1613–1628. [Google Scholar] [CrossRef]
- Cerra, B.; Venturoni, F.; Souma, M.; Ceccarelli, G.; Lozza, A.M.; Passeri, D.; De Franco, F.; Baxendale, I.R.; Pellicciari, R.; Macchiarulo, A.; et al. Development of 3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-sulfate sodium salt (INT-767): Process optimization, synthesis and characterization of metabolites. Eur. J. Med. Chem. 2022, 242, 114652. [Google Scholar] [CrossRef]
- Dehmlow, H.; Alvarez Sánchez, R.; Bachmann, S.; Bissantz, C.; Bliss, F.; Conde-Knape, K.; Graf, M.; Martin, R.E.; Obst Sander, U.; Raab, S.; et al. Discovery and optimisation of 1-hydroxyimino-3,3-diphenylpropanes, a new class of orally active GPBAR1 (TGR5) agonists. Bioorg. Med. Chem. Lett. 2013, 23, 4627–4632. [Google Scholar] [CrossRef]
- Terui, R.; Yanase, Y.; Yokoo, H.; Suhara, Y.; Makishima, M.; Demizu, Y.; Misawa, T. Development of Selective TGR5 Ligands Based on the 5,6,7,8-Tetrahydro-5,5,8,8-tetramethylnaphthalene Skeleton. ChemMedChem 2021, 16, 458–462. [Google Scholar] [CrossRef]
- Hodge, R.J.; Lin, J.; Vasist Johnson, L.S.; Gould, E.P.; Bowers, G.D.; Nunez, D.J. Safety, Pharmacokinetics, and Pharmacodynamic Effects of a Selective TGR5 Agonist, SB-756050, in Type 2 Diabetes. Clin. Pharmacol. Drug Dev. 2013, 2, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Carino, A.; Cipriani, S.; Marchianò, S.; Biagioli, M.; Santorelli, C.; Donini, A.; Zampella, A.; Monti, M.C.; Fiorucci, S. BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Sci. Rep. 2017, 7, 42801. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Jin, X.; Qiu, T.; Li, L.; Yu, R.; Chen, X.; Li, C.; Proud, C.G.; Jiang, T. Pathophysiology of obesity and its associated diseases. Acta Pharm. Sin. B 2023, 13, 2403–2424. [Google Scholar] [CrossRef] [PubMed]
- Maliszewska, K.; Kretowski, A. Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. Int. J. Mol. Sci. 2021, 22, 1530. [Google Scholar] [CrossRef]
- Saito, M.; Okamatsu-Ogura, Y. Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders. World J. Mens. Health 2023, 41, 489–507. [Google Scholar] [CrossRef]
- Cypess, A.M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A.B.; Kuo, F.C.; Palmer, E.L.; Tseng, Y.H.; Doria, A.; et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009, 360, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Matsushita, M.; Yoneshiro, T.; Okamatsu-Ogura, Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front. Endocrinol. 2020, 11, 222. [Google Scholar] [CrossRef]
- Shamsi, F.; Wang, C.H.; Tseng, Y.H. The evolving view of thermogenic adipocytes—Ontogeny, niche and function. Nat. Rev. Endocrinol. 2021, 17, 726–744. [Google Scholar] [CrossRef]
- Sentis, S.C.; Oelkrug, R.; Mittag, J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr. Connect. 2021, 10, R106–R115. [Google Scholar] [CrossRef]
- Yau, W.W.; Singh, B.K.; Lesmana, R.; Zhou, J.; Sinha, R.A.; Wong, K.A.; Wu, Y.; Bay, B.H.; Sugii, S.; Sun, L.; et al. Thyroid hormone (T(3)) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy 2019, 15, 131–150. [Google Scholar] [CrossRef] [PubMed]
- Zekri, Y.; Guyot, R.; Suñer, I.G.; Canaple, L.; Stein, A.G.; Petit, J.V.; Aubert, D.; Richard, S.; Flamant, F.; Gauthier, K. Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice. Elife 2022, 11, e81996. [Google Scholar] [CrossRef]
- Bianco, A.C.; McAninch, E.A. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 2013, 1, 250–258. [Google Scholar] [CrossRef]
- Santillo, A.; Burrone, L.; Falvo, S.; Senese, R.; Lanni, A.; Chieffi Baccari, G. Triiodothyronine induces lipid oxidation and mitochondrial biogenesis in rat Harderian gland. J. Endocrinol. 2013, 219, 69–78. [Google Scholar] [CrossRef]
- Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006, 439, 484–489. [Google Scholar] [CrossRef]
- Qi, C.; Sorrentino, S.; Medalia, O.; Korkhov, V.M. The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science 2019, 364, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Ould Amer, Y.; Hebert-Chatelain, E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochim. Biophys. Acta Bioenerg. 2018, 1859, 868–877. [Google Scholar] [CrossRef]
- Hu, X.; Yan, J.; Huang, L.; Araujo, C.; Peng, J.; Gao, L.; Liu, S.; Tang, J.; Zuo, G.; Zhang, J.H. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav. Immun. 2021, 91, 587–600. [Google Scholar] [CrossRef]
- London, E.; Stratakis, C.A. The regulation of PKA signaling in obesity and in the maintenance of metabolic health. Pharmacol. Ther. 2022, 237, 108113. [Google Scholar] [CrossRef]
- Imai, Y.; Toyoda, N.; Maeda, A.; Kadobayashi, T.; Fangzheng, G.; Nishikawa, M.; Iwasaka, T. Type 2 iodothyronine deiodinase expression is upregulated by the protein kinase A-dependent pathway and is downregulated by the protein kinase C-dependent pathway in cultured human thyroid cells. Thyroid 2001, 11, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.C.; Salas-Lucia, F.; Bianco, A.C. Deiodinases and the Metabolic Code for Thyroid Hormone Action. Endocrinology 2021, 162, bqab059. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Villegas, L.A.; Perino, A.; Lemos, V.; Zietak, M.; Nomura, M.; Pols, T.W.H.; Schoonjans, K. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat. Commun. 2018, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- Perino, A.; Demagny, H.; Velazquez-Villegas, L.; Schoonjans, K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol. Rev. 2021, 101, 683–731. [Google Scholar] [CrossRef]
- Casaburi, I.; Avena, P.; Lanzino, M.; Sisci, D.; Giordano, F.; Maris, P.; Catalano, S.; Morelli, C.; Andò, S. Chenodeoxycholic acid through a TGR5-dependent CREB signaling activation enhances cyclin D1 expression and promotes human endometrial cancer cell proliferation. Cell Cycle 2012, 11, 2699–2710. [Google Scholar] [CrossRef]
- Qi, Y.C.; Duan, G.Z.; Mao, W.; Liu, Q.; Zhang, Y.L.; Li, P.F. Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway. Chin. J. Nat. Med. 2020, 18, 898–906. [Google Scholar] [CrossRef]
- Song, Y.F.; Hogstrand, C.; Ling, S.C.; Chen, G.H.; Luo, Z. Creb-Pgc1α pathway modulates the interaction between lipid droplets and mitochondria and influences high fat diet-induced changes of lipid metabolism in the liver and isolated hepatocytes of yellow catfish. J. Nutr. Biochem. 2020, 80, 108364. [Google Scholar] [CrossRef]
- Zhao, L.J.; Zhang, S.F. Activation of TGR5 promotes mitochondrial biogenesis in human aortic endothelial cells. Biochem. Biophys. Res. Commun. 2018, 500, 952–957. [Google Scholar] [CrossRef]
- Jiang, L.S.; Li, W.; Zhuang, T.X.; Yu, J.J.; Sun, S.; Ju, Z.C.; Wang, Z.T.; Ding, L.L.; Yang, L. Ginsenoside Ro Ameliorates High-Fat Diet-Induced Obesity and Insulin Resistance in Mice via Activation of the G Protein-Coupled Bile Acid Receptor 5 Pathway. J. Pharmacol. Exp. Ther. 2021, 377, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, A.; Wu, Z.; Wei, Y.; Hu, X.; Guo, J. Finger Citron Extract Ameliorates Glycolipid Metabolism and Inflammation by Regulating GLP-1 Secretion via TGR5 Receptors in Obese Rats. Evid. Based Complement Alternat. Med. 2021, 2021, 6623379. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Sousa, K.M.; Jin, L.; Dong, B.; Kim, B.W.; Ramirez, R.; Xiao, Z.; Gu, Y.; Yang, Q.; Wang, J.; et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatology 2016, 64, 760–773. [Google Scholar] [CrossRef]
- Ono, E.; Inoue, J.; Hashidume, T.; Shimizu, M.; Sato, R. Anti-obesity and anti-hyperglycemic effects of the dietary citrus limonoid nomilin in mice fed a high-fat diet. Biochem. Biophys. Res. Commun. 2011, 410, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.P.; Rajagopal, S.; Mahavadi, S.; Mirshahi, F.; Grider, J.R.; Murthy, K.S.; Sanyal, A.J. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem. Biophys. Res. Commun. 2012, 427, 600–605. [Google Scholar] [CrossRef]
- Gloerich, M.; Bos, J.L. Epac: Defining a new mechanism for cAMP action. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Breckler, M.; Berthouze, M.; Laurent, A.C.; Crozatier, B.; Morel, E.; Lezoualc'h, F. Rap-linked cAMP signaling Epac proteins: Compartmentation, functioning and disease implications. Cell Signal 2011, 23, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.; Joseph, J.W.; Chepurny, O.G.; Monaco, M.; Wheeler, M.B.; Bos, J.L.; Schwede, F.; Genieser, H.G.; Holz, G.G. Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J. Biol. Chem. 2003, 278, 8279–8285. [Google Scholar] [CrossRef]
- Hov, J.R.; Keitel, V.; Laerdahl, J.K.; Spomer, L.; Ellinghaus, E.; ElSharawy, A.; Melum, E.; Boberg, K.M.; Manke, T.; Balschun, T.; et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS ONE 2010, 5, e12403. [Google Scholar] [CrossRef]
- Macchiarulo, A.; Gioiello, A.; Thomas, C.; Pols, T.W.; Nuti, R.; Ferrari, C.; Giacchè, N.; De Franco, F.; Pruzanski, M.; Auwerx, J.; et al. Probing the Binding Site of Bile Acids in TGR5. ACS Med. Chem. Lett. 2013, 4, 1158–1162. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Ge, Y.; Ma, L.; Chen, Q.; Liu, H.; Du, Y.; Ye, R.D.; Hu, H.; Ren, R. Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein. Signal Transduct. Target Ther. 2020, 5, 142. [Google Scholar] [CrossRef]
- Yang, F.; Mao, C.; Guo, L.; Lin, J.; Ming, Q.; Xiao, P.; Wu, X.; Shen, Q.; Guo, S.; Shen, D.D.; et al. Structural basis of GPBAR activation and bile acid recognition. Nature 2020, 587, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, X.; He, J.; Luo, Y.; Zheng, P.; Yu, B.; Chen, D.; Huang, Z. Oleanolic acid promotes skeletal muscle fiber type transformation by activating TGR5-mediated CaN signaling pathway. J. Nutr. Biochem. 2024, 123, 109507. [Google Scholar] [CrossRef]
- Maczewsky, J.; Kaiser, J.; Gresch, A.; Gerst, F.; Düfer, M.; Krippeit-Drews, P.; Drews, G. TGR5 Activation Promotes Stimulus-Secretion Coupling of Pancreatic β-Cells via a PKA-Dependent Pathway. Diabetes 2019, 68, 324–336. [Google Scholar] [CrossRef]
- Mikami, T.; Kim, J.; Park, J.; Lee, H.; Yaicharoen, P.; Suidasari, S.; Yokozawa, M.; Yamauchi, K. Olive leaf extract prevents obesity, cognitive decline, and depression and improves exercise capacity in mice. Sci. Rep. 2021, 11, 12495. [Google Scholar] [CrossRef]
- Han, Z.; Yao, L.; Zhong, Y.; Xiao, Y.; Gao, J.; Zheng, Z.; Fan, S.; Zhang, Z.; Gong, S.; Chang, S.; et al. Gut microbiota mediates the effects of curcumin on enhancing Ucp1-dependent thermogenesis and improving high-fat diet-induced obesity. Food Funct. 2021, 12, 6558–6575. [Google Scholar] [CrossRef]
- Tian, F.; Chen, T.; Xu, W.; Fan, Y.; Feng, X.; Huang, Q.; Chen, J. Curcumin Compensates GLP-1 Deficiency via the Microbiota-Bile Acids Axis and Modulation in Functional Crosstalk between TGR5 and FXR in ob/ob Mice. Mol. Nutr. Food Res. 2023, 67, e2300195. [Google Scholar] [CrossRef]
- He, Y.; Chen, X.; Li, Y.; Liang, Y.; Hong, T.; Yang, J.; Cao, Z.; Mai, H.; Yao, J.; Zhang, T.; et al. Curcumin supplementation alleviates hepatic fat content associated with modulation of gut microbiota-dependent bile acid metabolism in patients with nonalcoholic simple fatty liver disease: A randomized controlled trial. Am. J. Clin. Nutr. 2024, 120, 66–79. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, S.Y.; Li, J.; Liu, H.N.; Xie, X.; Nan, F.J. Highly lipophilic 3-epi-betulinic acid derivatives as potent and selective TGR5 agonists with improved cellular efficacy. Acta Pharmacol. Sin. 2014, 35, 1463–1472. [Google Scholar] [CrossRef]
- Lo, S.H.; Cheng, K.C.; Li, Y.X.; Chang, C.H.; Cheng, J.T.; Lee, K.S. Development of betulinic acid as an agonist of TGR5 receptor using a new in vitro assay. Drug Des. Devel Ther. 2016, 10, 2669–2676. [Google Scholar] [PubMed]
- Yun, Y.; Zhang, C.; Guo, S.; Liang, X.; Lan, Y.; Wang, M.; Zhuo, N.; Yin, J.; Liu, H.; Gu, M.; et al. Identification of Betulinic Acid Derivatives as Potent TGR5 Agonists with Antidiabetic Effects via Humanized TGR5(H88Y) Mutant Mice. J. Med. Chem. 2021, 64, 12181–12199. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, N.; Yun, Y.; Zhang, C.; Guo, S.; Yin, J.; Zhao, T.; Ge, X.; Gu, M.; Xie, X.; Nan, F. Discovery of betulinic acid derivatives as gut-restricted TGR5 agonists: Balancing the potency and physicochemical properties. Bioorg. Chem. 2024, 144, 107132. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.H.; Li, Y.; Cheng, K.C.; Niu, C.S.; Cheng, J.T.; Niu, H.S. Ursolic acid activates the TGR5 receptor to enhance GLP-1 secretion in type 1-like diabetic rats. Naunyn. Schmiedebergs Arch. Pharmacol. 2017, 390, 1097–1104. [Google Scholar] [CrossRef]
- Halkias, C.; Darby, W.G.; Feltis, B.N.; McIntyre, P.; Macrides, T.A.; Wright, P.F.A. Marine Bile Natural Products as Agonists of the TGR5 Receptor. J. Nat. Prod. 2021, 84, 1507–1514. [Google Scholar] [CrossRef]
- Jafri, L.; Saleem, S.; Calderwood, D.; Gillespie, A.; Mirza, B.; Green, B.D. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion. Peptides 2016, 78, 51–58. [Google Scholar] [CrossRef]
- Horiba, T.; Katsukawa, M.; Mita, M.; Sato, R. Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway. Biochem. Biophys. Res. Commun. 2015, 463, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.-X.; Cao, Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, 159–164. [Google Scholar] [CrossRef]
Site | Key Residues | Function | Ligand Type | Structural Features | Ref. |
---|---|---|---|---|---|
Orthosteric Site | Y892.61, N933.33, F963.36, L1665.40, Y2406.51, S2476.58, S2707.43 | Primary ligand-binding site; initiates conformational changes leading to G protein activation. Binding depth and contact profile determine activation strength. | Bile acids (e.g., LCA), Synthetic agonists (e.g., INT-777, 23H) | For bile acids: The orthosteric pocket is relatively shallow and located near the extracellular surface, formed by TM2, TM3, TM6, and TM7. N933.33 and S2707.43 form polar interactions with the 3α-OH and carboxyl group. F963.36 and W2376.48 form a hydrophobic groove. For synthetic ligands: INT-777 and 23H bind deeper within the TM core, engaging TM3, TM5, and TM6. F963.36, L1665.40, Y2406.51, and S2476.58 form a deep hydrophobic pocket that stabilizes the ligand and promotes TM6 displacement. | [65,66,67] |
Allosteric Site | L1043.44, L1304.48, T1314.49 | Enhances orthosteric ligand efficacy via cooperative binding; modulates receptor sensitivity. | Cholesterol, 12α-OH BAs (e.g., cholic acid) | Shallow surface groove between TM3–TM4–TM5–ICL2; T131A abolishes synergy. | [67] |
Toggle Switch | W2376.48, Y2406.51 | Couples ligand binding to TM6 movement; essential for activation signal propagation. | All orthosteric ligands | Rotational shift of Y240 stabilizes outward TM6; W237 engages C6 substituent of bile acids. | [67] |
Gαs Binding Interface | E1093.49, V1885.62, Q1955.69, V1785.32, R201, R204, R208 | Mediates Gαs coupling and downstream cAMP signaling via electrostatic and hydrophobic interactions. | Gαs protein | TM6 outward shift creates binding cleft for Gαs α5-helix; stabilized by ICL3 charge motif. | [66,67] |
Compounds | Study Model | Key Mechanisms Involved | TGR5-Related Findings | Metabolic Outcomes | Ref. |
---|---|---|---|---|---|
Oleanolic acid (OA) | Mouse (HFD-fed) | OA activates TGR5–cAMP signaling in the hypothalamus to regulate appetite | Central TGR5 activation increases cAMP, downregulates orexigenic peptides | ↓ Food intake, ↓ body weight | [15] |
Skeletal muscle study | OA promotes slow-twitch muscle fiber formation via TGR5–CaN signaling | TGR5 activation enhances oxidative metabolism through calcineurin–MEF2/PGC-1α axis | ↑ Mitochondrial function, ↑ energy expenditure | [68] | |
Isolated β-cells | OA stimulates insulin secretion through cAMP–PKA pathway | TGR5 activation in β-cells promotes insulin release; blocked by AC or Gαs inhibitors | ↑ Insulin secretion, improved glucose homeostasis | [69] | |
Obese mice (DIO model) | OA-rich olive leaf extract improves systemic metabolism via TGR5 activation | OA activates TGR5 systemically; enhances lipid utilization and thermogenesis | ↓ Body weight, ↑ exercise capacity, ↓ cognitive decline | [70] | |
Curcumin | HFD-fed mice | Curcumin alters gut microbiota and BA metabolism (↑ DCA, LCA) | TGR5 activation in thermogenic adipose tissue; effect lost in TGR5−/− mice | ↓ body weight, ↑ thermogenesis, ↑ UCP1 | [71] |
ob/ob mice | Curcumin increases L-cell population via gut–BA modulation (↓ Lactobacillus, ↑ DCA) | Acts as TGR5 agonist/FXR antagonist in intestine; ↑ GLP-1 via TGR5 signaling | ↑ energy expenditure, ↓ glucose, ↑ GLP-1 secretion | [72] | |
NASFL patients | Curcumin shifts gut microbiota (↑ Bacteroides), ↑ serum DCA levels | ↑ TGR5 expression in PBMCs, ↑ GLP-1 secretion in serum after 24 weeks | ↓ hepatic fat, ↓ body weight, ↓ insulin resistance, ↑ GLP-1 | [73] | |
Betulinic Acid (BA) | In vitro (reporter assay & SAR study) | Identified BA as a selective TGR5 agonist over FXR; induces GLP-1 release | Activates TGR5 in intestinal cells; no FXR cross-activation | ↑ GLP-1 secretion, potential appetite suppression | [22] |
Humanized TGR5(H88Y) mouse model | BA analogs improve glucose metabolism in species-specific human TGR5 model | Strong TGR5 activation in human TGR5 knock-in mice; improves insulin sensitivity | ↑ Glucose tolerance, ↑ insulin sensitivity | [76] | |
Gut-restricted analog development | Synthesized BA analogs (e.g., 22-Na) with low systemic exposure to avoid gallbladder filling | Retained intestinal TGR5 activity while minimizing systemic TGR5 activation | ↑ Local TGR5 effects without systemic side effects (gallbladder risk) | [77] | |
Ursolic acid (UA) | Type 1-like diabetic rats | UA increases cAMP in enteroendocrine L-cells | Activates intestinal TGR5 → GLP-1 secretion ↑ | ↑ GLP-1 → enhanced insulin secretion and glucose control | [78] |
5β-scymnol | HEK293 cells (TGR5 overexpression) | ↑ intracellular [Ca2+] via Gαq pathway (blocked by UBO-QIC) | Strong and sustained TGR5-specific activation by marine bile compounds | Potential activation of energy-related TGR5 pathways | [79] |
Quinovic acid (QA) and derivatives | STC-1 intestinal L cells | Activation of TGR5 signaling; increased expression of proglucagon, PC1/3, and GIP | Direct TGR5 agonist activity; enhanced GLP-1 biosynthesis and secretion | Potential anti-obesity effect via incretin pathway activation | [80] |
Obacunone | Obese KKAy mice, in vitro reporter assays | ↑ TGR5 and PPARγ transcriptional activity; ↑ TGR5 mRNA in muscle | Acts as TGR5 agonist and upregulates its expression in muscle | ↓ body weight, ↓ adiposity, ↑ muscle mass, ↓ blood glucose | [81] |
Nomilin | HFD-fed mice, TGR5 luciferase reporter assay | Activates TGR5 and downstream cAMP signaling | Confirmed TGR5 agonist via luciferase activity | ↓ body weight gain, ↓ fasting glucose | [59] |
Compound | Structure | Binding Score (Kcal/mol) | Residual Target | Docking Site |
---|---|---|---|---|
Oleanolic acid (OA) | C30H48O3 | −8.8 | ▪ Conventional hydrogen bonds: Leu71, Leu74 ▪ van der Waals interactions: Asn93 (N933.33), Ser247 (S2476.58), Tyr89, Pro92, Trp75, Val88, Leu166, Val170, Val248, Tyr167, Tyr251 | Orthosteric site |
Curcumin | C21H20O6 | −8.8 | ▪ Hydrogen bonds: Asn93 (N933.33), Ser247 (S2476.58) ▪ Hydrophobic interactions (Alkyl and π–Alkyl): Leu246, Leu265, Leu266, Leu71 | Orthosteric site |
Betulinic Acid (BA) | C30H48O3 | −7.3 | ▪ Hydrogen bond: Ser156 (S156), Ser157 (S157) ▪ Pi–alkyl interaction: Trp149 (W149) ▪ van der Waals interactions: Asn147 (N147), His148 (H148), Cys155 (C155), Tyr251 (Y251), Glu252 (E252) | Shallow orthosteric site |
Ursolic acid (UA) | C30H48O3 | −9.0 | ▪ Hydrogen bond: Val248 (V248), Trp75 (W75) ▪ Unfavorable acceptor–acceptor interaction: Leu74 (L74) ▪ van der Waals interactions: Leu71 (L71), Tyr89 (Y89) | Shallow orthosteric site |
5β-scymnol | C27H48O6 | −8.7 | ▪ Hydrogen bond: Asn93 (N933.33), Ser247 (S2476.58), Tyr251 (Y2517.31), Leu244 L2446.55), Val248 (V2486.59) ▪ Pi–alkyl interactions: Tyr89 (Y892.61), Trp75 (W751.55) ▪ Van der Waals interactions: Phe96 (F963.36), Leu166 (L1665.40) | Shallow orthosteric site |
Quinovic acid (QA) | C30H46O5 | −9.1 | ▪ Hydrogen bond: Asn93 (N933.33), Leu74 (L742.66) ▪ van der Waals interactions: Ser157 (S1574.57), Phe96 (F963.36), Tyr251 (Y2517.31), Leu166 (L1665.40) | Shallow orthosteric site |
Obacunone | C26H30O7 | −9.9 | ▪ Hydrogen bond: Asn93 (N933.33), Tyr251 (Y2517.31) ▪ Pi–alkyl interaction: Leu71 (L711.49) ▪ van der Waals interactions: Ser247 (S2476.58), Ser157 (S1574.57), Leu166 (L1665.40), Leu74 (L742.66), Tyr89 (Y892.61) | Shallow orthosteric site |
Nomilin | C28H34O9 | −9.7 | ▪ Hydrogen bond: Asn93 (N933.33) ▪ Pi–alkyl interaction: Leu71 (L711.49) ▪ Pi–pi T-shaped interaction: Phe96 (F963.36) ▪ van der Waals interactions: Leu166, Leu244, Leu266, Val170, Val248, Ser247, Ser270 | Shallow orthosteric site |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, D.O. Structure-Based Insights into TGR5 Activation by Natural Compounds: Therapeutic Implications and Emerging Strategies for Obesity Management. Biomedicines 2025, 13, 2405. https://doi.org/10.3390/biomedicines13102405
Moon DO. Structure-Based Insights into TGR5 Activation by Natural Compounds: Therapeutic Implications and Emerging Strategies for Obesity Management. Biomedicines. 2025; 13(10):2405. https://doi.org/10.3390/biomedicines13102405
Chicago/Turabian StyleMoon, Dong Oh. 2025. "Structure-Based Insights into TGR5 Activation by Natural Compounds: Therapeutic Implications and Emerging Strategies for Obesity Management" Biomedicines 13, no. 10: 2405. https://doi.org/10.3390/biomedicines13102405
APA StyleMoon, D. O. (2025). Structure-Based Insights into TGR5 Activation by Natural Compounds: Therapeutic Implications and Emerging Strategies for Obesity Management. Biomedicines, 13(10), 2405. https://doi.org/10.3390/biomedicines13102405