Artificial Intelligence Driven Biomedical Image Classification for Robust Rheumatoid Arthritis Classification
Abstract
1. Introduction
2. Related Works
3. The Proposed Model
3.1. Noise Filtering Technique
3.2. Feature Extraction Using Optimal ECN Model
Algorithm 1. Pseudocode of AOA |
Initialization of the parameter pop-size (N) and maximal iteration (T) |
Initialization of the location of every search agent |
Set the parameters and |
While |
Evaluate the fitness of all the search agent Upgrade bestFitness, |
Evaluate the MOP |
Evaluate the |
For every search agent |
If |
Upgrade position |
Else |
Upgrade position |
End if |
End for |
End While |
Return best Fitness, |
3.3. RA Classification Model
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myasoedova, E.; Athreya, A.P.; Crowson, C.S.; Davis, J., III; Warrington, K.J.; Walchak, R.C.; Carlson, E.; Kalari, K.R.; Bongartz, T.; Tak, P.P.; et al. Toward Individualized Prediction of Response to Methotrexate in Early Rheumatoid Arthritis: A Pharmacogenomics-Driven Machine Learning Approach. Arthritis Care Res. 2022, 74, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Maarseveen, T.D.; Meinderink, T.; Reinders, M.J.T.; Knitza, J.; Huizinga, T.W.J.; Kleyer, A.; Simon, D.; Akker, E.B.V.D.; Knevel, R. Machine learning electronic health record identification of patients with rheumatoid arthritis: Algorithm pipeline development and validation study. JMIR Med. Inform. 2020, 8, e23930. [Google Scholar] [CrossRef] [PubMed]
- Goñi, M.; Basu, N.; Murray, A.D.; Waiter, G.D. Brain predictors of fatigue in rheumatoid arthritis: A machine learning study. PLoS ONE 2022, 17, e0269952. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.; McGeough, C.; Eakin, A.; Ahmed, T.; Small, D.; Gardiner, P.; Pendleton, A.; Wright, G.; Bjourson, A.J.; Gibson, D.S.; et al. ATRPred: A machine learning based tool for clinical decision making of anti-TNF treatment in rheumatoid arthritis patients. PLoS Comput. Biol. 2022, 18, e1010204. [Google Scholar] [CrossRef] [PubMed]
- Yoosuf, N.; Maciejewski, M.; Ziemek, D.; Jelinsky, S.A.; Folkersen, L.; Müller, M.; Sahlström, P.; Vivar, N.; Catrina, A.; Berg, L.; et al. Early prediction of clinical response to anti-TNF treatment using multi-omics and machine learning in rheumatoid arthritis. Rheumatology 2022, 61, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J.; Alfredsson, L.; Lampa, J. Machine-learning-based knowledge discovery in rheumatoid arthritis-related registry data to identify predictors of persistent pain. Pain 2019, 161, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Crowson, C.S.; Gunderson, T.M.; Davis, J.M., III; Myasoedova, E.; Kronzer, V.L.; Coffey, C.M.; Atkinson, E.J. Using Unsupervised Machine Learning Methods to Cluster Comorbidities in a Population-based Cohort of Patients with Rheumatoid Arthritis. Arthritis Care Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.V.; Gupta, E.; Choudhury, T. Detection of rheumatoid arthritis using machine learning. In Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 11–12 December 2019. [Google Scholar]
- Sharon, H.; Elamvazuthi, I.; Lu, C.; Parasuraman, S.; Natarajan, E. Classification of Rheumatoid Arthritis using Machine Learning Algorithms. In Proceedings of the 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, 15–17 October 2019; pp. 245–250. [Google Scholar] [CrossRef]
- Kedra, J.; Davergne, T.; Braithwaite, B.; Servy, H.; Gossec, L. Machine learning approaches to improve disease management of patients with rheumatoid arthritis: Review and future directions. Expert Rev. Clin. Immunol. 2021, 17, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.J.; Lim, L.J.; Ooi, B.N.; Koh, E.T.; Tan, J.W.L.; Chong, S.S.; Khor, C.C.; Tucker-Kellogg, L.; Leong, K.P.; Lee, C.G.; et al. Functional coding haplotypes and machine-learning feature elimination identifies predictors of Methotrexate Response in Rheumatoid Arthritis patients. eBioMedicine 2022, 75, 103800. [Google Scholar] [CrossRef] [PubMed]
- Ahalya, R.K.; Umapathy, S.; Krishnan, P.T.; Raj, A.N.J. Automated evaluation of rheumatoid arthritis from hand radiographs using Machine Learning and deep learning techniques. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2022, 236, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhu, H.; Gao, X.; Zhang, Y.; Hui, Y.; Wang, F. Grading of metacarpophalangeal rheumatoid arthritis on ultrasound images using machine learning algorithms. IEEE Access 2020, 8, 67137–67146. [Google Scholar] [CrossRef]
- Tang, J.; Jin, Z.; Zhou, X.; Chu, H.; Yuan, J.; Wu, M.; Cheng, Q.; Wang, X. Grading of rheumatoid arthritis on ultrasound images with deep convolutional neural network. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018; pp. 1–4. [Google Scholar]
- Sharon, H.; Elamvazuthi, I.; Lu, C.-K.; Parasuraman, S.; Natarajan, E. Development of rheumatoid arthritis classification from electronic image sensor using ensemble method. Sensors 2019, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-Y.; Hsieh, S.-Y.; Tseng, V.S. eDRAM: Effective early disease risk assessment with matrix factorization on a large-scale medical database: A case study on rheumatoid arthritis. PLoS ONE 2018, 13, e0207579. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Perez, J.; Garcia-Gancedo, L.; McKinnell, J.; Van Der Drift, A.; Powell, A.; Hamy, V.; Keller, T.; Yang, G.-Z. Developing fine-grained actigraphies for rheumatoid arthritis patients from a single accelerometer using machine learning. Sensors 2017, 17, 2113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ye, S.; Liao, P.; Liu, Y.; Su, G.; Sun, Y. Enhanced capsule network for medical image classification. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1544–1547. [Google Scholar]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Kaveh, A.; Hamedani, K.B. January. Improved arithmetic optimization algorithm and its application to discrete structural optimization. In Structures; Elsevier: Amsterdam, The Netherlands, 2021; Volume 35, pp. 748–764. [Google Scholar]
- Bisoi, R.; Dash, P.K.; Das, P.P. Short-term electricity price forecasting and classification in smart grids using optimized multikernel extreme learning machine. Neural Comput. Appl. 2018, 32, 1457–1480. [Google Scholar] [CrossRef]
- Xing, Y.; Ban, X.; Guo, C. Probabilistic forecasting of traffic flow using multikernel based extreme learning machine. Sci. Program. 2017, 2017, 2073680. [Google Scholar] [CrossRef]
- Biomechanical Features of Orthopedic Patients. Available online: https://www.kaggle.com/datasets/uciml/biomechanical-features-of-orthopedic-patients?resource=download (accessed on 12 August 2022).
Class | No. of Instances |
---|---|
Hernia | 60 |
Spondylolisthesis | 150 |
Normal | 100 |
Total Number of Samples | 310 |
Training/Testing (80:20) | |||||
---|---|---|---|---|---|
Labels | Accuracy | Precision | Recall | F-Score | AUC Score |
Training Phase | |||||
Hernia | 96.77 | 93.88 | 90.20 | 92.00 | 94.34 |
Spondylolisthesis | 96.77 | 95.87 | 97.48 | 96.67 | 96.80 |
Normal | 97.58 | 96.15 | 96.15 | 96.15 | 97.19 |
Average | 97.04 | 95.30 | 94.61 | 94.94 | 96.11 |
Testing Phase | |||||
Hernia | 98.39 | 90.00 | 100.00 | 94.74 | 99.06 |
Spondylolisthesis | 96.77 | 96.77 | 96.77 | 96.77 | 96.77 |
Normal | 98.39 | 100.00 | 95.45 | 97.67 | 97.73 |
Average | 97.85 | 95.59 | 97.41 | 96.40 | 97.85 |
Training/Testing (70:30) | |||||
---|---|---|---|---|---|
Labels | Accuracy | Precision | Recall | F-Score | AUC Score |
Training Phase | |||||
Hernia | 98.62 | 97.67 | 95.45 | 96.55 | 97.44 |
Spondylolisthesis | 94.93 | 96.00 | 93.20 | 94.58 | 94.85 |
Normal | 94.47 | 89.19 | 94.29 | 91.67 | 94.42 |
Average | 96.01 | 94.29 | 94.31 | 94.27 | 95.57 |
Testing Phase | |||||
Hernia | 98.92 | 100.00 | 93.75 | 96.77 | 96.88 |
Spondylolisthesis | 97.85 | 97.87 | 97.87 | 97.87 | 97.85 |
Normal | 98.92 | 96.77 | 100.00 | 98.36 | 99.21 |
Average | 98.57 | 98.22 | 97.21 | 97.67 | 97.98 |
Methods | Accuracy | Precision | Recall | F-Score |
---|---|---|---|---|
ARAC-AOADL | 98.57 | 98.22 | 97.21 | 97.67 |
Bagging | 94.89 | 94.97 | 95.4 | 95.23 |
Adaboost | 89.37 | 89.96 | 90.01 | 89.21 |
DT | 92.64 | 93.32 | 94.73 | 94.68 |
Subspace-k-NN Random | 97.50 | 97.83 | 97.02 | 96.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obayya, M.; Alamgeer, M.; S. Alzahrani, J.; Alabdan, R.; N. Al-Wesabi, F.; Mohamed, A.; Alsaid Hassan, M.I. Artificial Intelligence Driven Biomedical Image Classification for Robust Rheumatoid Arthritis Classification. Biomedicines 2022, 10, 2714. https://doi.org/10.3390/biomedicines10112714
Obayya M, Alamgeer M, S. Alzahrani J, Alabdan R, N. Al-Wesabi F, Mohamed A, Alsaid Hassan MI. Artificial Intelligence Driven Biomedical Image Classification for Robust Rheumatoid Arthritis Classification. Biomedicines. 2022; 10(11):2714. https://doi.org/10.3390/biomedicines10112714
Chicago/Turabian StyleObayya, Marwa, Mohammad Alamgeer, Jaber S. Alzahrani, Rana Alabdan, Fahd N. Al-Wesabi, Abdullah Mohamed, and Mohamed Ibrahim Alsaid Hassan. 2022. "Artificial Intelligence Driven Biomedical Image Classification for Robust Rheumatoid Arthritis Classification" Biomedicines 10, no. 11: 2714. https://doi.org/10.3390/biomedicines10112714
APA StyleObayya, M., Alamgeer, M., S. Alzahrani, J., Alabdan, R., N. Al-Wesabi, F., Mohamed, A., & Alsaid Hassan, M. I. (2022). Artificial Intelligence Driven Biomedical Image Classification for Robust Rheumatoid Arthritis Classification. Biomedicines, 10(11), 2714. https://doi.org/10.3390/biomedicines10112714