Ppb-Level Butanone Sensor Based on ZnO-TiO2-rGO Nanocomposites
Abstract
:1. Introduction
2. Materials and Characterization Instruments
2.1. Reagents and Instruments
2.2. Materials Preparation
2.3. Fabrication and Testing of Sensors
3. Results and Discussion
3.1. Characterization
3.2. Gas-Sensing Properties
3.3. Gas-Sensing Mechanism of the ZnO-TiO2-rGO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, Q.; Xu, M.; Shen, Z.; Wei, Q. A nanostructured Cr2O3/WO3 p–n junction sensor for highly sensitive detection of butanone. J. Mater. Sci. Mater. Electron. 2017, 128, 12056–12062. [Google Scholar] [CrossRef]
- Liu, X.; Qin, X.; Ji, H.; Wang, M. An enhanced butanone sensing performance of Er0.7Yb0.3FeO3 material with the proper electronic structure. J. Alloys Compd. 2018, 772, 263–271. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, Z.; Sun, B.; Jia, Y.; Li, M.; Liu, J. Highly sensitive and selective butanone sensors based on cerium-doped SnO2 thin films. Sens. Actuators B Chem. 2010, 145, 667–673. [Google Scholar] [CrossRef]
- Xu, D.; Ge, K.; Qi, S.; Chen, Y.; Liu, Q. Hydrangea-like mesoporous WO3 nanoflowers with crystalline framework for 3-hydroxy-2-butanone sensing. Anal. Bioanal. Chem. 2020, 412, 1–8. [Google Scholar] [CrossRef] [PubMed]
- György, S.; Mihály, B. Catalytic transfer hydrogenation of 2-butanone over oxide catalysts. React. Kinet. Mech. Cat. 1999, 68, 197–205. [Google Scholar]
- Bhowmik, B.; Manjuladevi, V.; Gupta, R.; Bhattacharyya, P. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 2016, 16, 3488–3495. [Google Scholar] [CrossRef]
- Oliveira, T.; Zito, C.; Perfecto, T.; Azevedo, G.; Volanti, D. ZnO twin-rods decorated with Pt nanoparticles for butanone detection. New J. Chem. 2020, 44, 15574–15583. [Google Scholar] [CrossRef]
- Zito, C.; Perfecto, T.; Oliveira, T.; Volanti, D. Bicone-like ZnO structure as high-performance butanone sensor. Mater. Lett. 2018, 223, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, H.; Xu, M.; Shen, Z.; Wei, Q. A WO3 nanorod-Cr2O3 nanoparticle composite for selective gas sensing of 2-butanone. Chin. Chem. Lett. 2018, 29, 538–542. [Google Scholar] [CrossRef]
- Vioto, G.; Perfecto, T.; Zito, C.; Volanti, D. Enhancement of 2-butanone sensing properties of SiO2@CoO core-shell structures. Ceram. Int. 2020, 46, 22692–22698. [Google Scholar] [CrossRef]
- Shih, B.; Xue, Y.; Zhang, P.; Cohen, M.; Louie, S. Quasiparticle band gap of ZnO: High accuracy from the conventional GW approach. Phys. Rev. Lett. 2010, 105, 146401. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Gao, H.; Zhang, R.; Meng, F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Vayssieres, L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Adv. Mater. 2010, 15, 464–466. [Google Scholar] [CrossRef]
- Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wei, S.; Zunger, A. Intrinsic N-Type Versus P-Type Doping Asymmetry and the Defect Physics of ZnO. Phys. Rev. B 2001, 63, 075205. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Qian, X.; Yin, J.; Zhu, Z. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir 2004, 20, 3441–3448. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Song, J.; Jin, L.; Zhong, L. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Lett. 2006, 6, 2768–2772. [Google Scholar] [CrossRef]
- Meng, F.; Qi, T.; Zhang, J.; Zhu, H.; Yuan, Z.; Liu, C.; Qin, W.; Ding, M. MoS2-templated porous hollow MoO3 microspheres for highly selective ammonia sensing via a Lewis acid-base interaction. IEEE Trans. Ind. Electron. 2021. Available online: https://ieeexplore.ieee.org/abstract/document/9339981/ (accessed on 2 October 2021). [CrossRef]
- Yuan, Y.; Adimi, S.; Thomas, T.; Wang, J.; Guo, H.; Chen, J.; Attfield, J.; DiSalvo, F.; Yang, M. Co3Mo3N—An efficient multifunctional electrocatalyst. Innovation 2021, 2, 40–46. [Google Scholar]
- Ji, H.; Qin, W.; Yuan, Z.; Meng, F. Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas Sensor with dynamic measurement and PCA weak separation. Sens. Actuators B Chem. 2021, 348, 130698. [Google Scholar] [CrossRef]
- Shao, X.; Wang, H.; Yuan, M.; Yang, J.; Zhan, W.; Wang, L.; Guo, Y.; Lu, G. Thermal stability of Si-doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3. Rare Metals 2019, 38, 292–298. [Google Scholar] [CrossRef]
- Abbas, M.; Zubair, A.; Riaz, K.; Huang, W.; Zubair, M. Engineering multimodal dielectric resonance of TiO2 based nanostructures for high-performance refractive index sensing applications. Biomed. Opt. Express 2020, 28, 23509–23522. [Google Scholar] [CrossRef]
- Wang, F.; Shen, B.; Zhu, S.; Wang, Z. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel 2019, 249, 54–60. [Google Scholar] [CrossRef]
- Taghvaei, N.; Taghvaei, E.; Askari, M. Synthesis of Anodized TiO2 Nanotube Arrays as Ion Sieve for Lithium Extraction. ChemistrySelect 2020, 5, 10339–10345. [Google Scholar] [CrossRef]
- Wang, N.; Sun, C.; Zhao, Y.; Zhou, S.; Chen, P.; Jiang, L. Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. J. Mater. Chem. A 2008, 18, 3909–3911. [Google Scholar] [CrossRef]
- Park, J.; Sun, W.; Lee, J.; Kim, S. Synthesis and Gas Sensing Properties of TiO2–ZnO Core-Shell Nanofibers. J. Am. Ceram. Soc. 2010, 92, 2551–2554. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, Y.; Zhang, J.; Zhang, H. Rose-like MoO3/MoS2/rGO low temperature ammonia sensors based on multi-gas detection methods. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar]
- Meng, F.; Li, X.; Yuan, Z.; Lei, Y.; Qi, T.; Li, J. Ppb-Level Xylene Gas Sensors based on Co3O4 Nanoparticles coated Reduced Graphene Oxide(rGO) Nanosheets Operating at Low Temperature. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar]
- Wu, K.; Luo, Y.; Li, Y.; Zhang, C. Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors. Beilstein J. Nanotechnol. 2019, 10, 2516–2526. [Google Scholar] [CrossRef] [Green Version]
- Salehi, T.; Taherizadeh, A.; Bahrami, A.; Allafchian, A.; Ghafarinia, V. Towards a Highly Functional Hybrid ZnO Nanofiber-rGO Gas Sensor. Adv. Eng. Mater. 2020, 22, 2000005. [Google Scholar] [CrossRef]
- Chang, Y.; Yao, Y.; Wang, B.; Luo, H.; Li, T.; Zhi, L. Reduced Graphene Oxide Mediated SnO2 Nanocrystals for Enhanced Gas-sensing Properties. J. Mater. Sci. Technol. 2013, 29, 157–160. [Google Scholar] [CrossRef]
- Deng, S.; Tjoa, V.; Fan, H.; Tan, H.; Sayle, D.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor. J. Am. Chem. Soc. 2012, 134, 4905–4917. [Google Scholar] [CrossRef] [PubMed]
- Johra, F.; Jung, W. RGO-TiO2-ZnO composites: Synthesis, characterization, and application to photocatalysis. Appl. Catal. A Gen. 2015, 491, 52–57. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143. [Google Scholar] [CrossRef] [Green Version]
- Marcano, D.; Kosynkin, D.; Berlin, J.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.; Lu, W.; Tour, J. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806. [Google Scholar] [CrossRef]
- Huynh, V.; Nguyen, M.; Nguyen, T.; Doan, B.; Le, T.; Dinh, N.; Nguyen, D.; Nguyen, A.; Le, M.; Hoang, M.; et al. Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement. Surf. Interfaces 2021, 23, 100950. [Google Scholar]
- Liao, D.; Badour, C.; Liao, B. Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J. Mater. Chem. A 2008, 194, 11–19. [Google Scholar] [CrossRef]
- Divya, K.; Xavier, M.; Vandana, P.; Reethu, V.; Mathew, S. A quaternary TiO2/ZnO/RGO/Ag nanocomposite with enhanced visible light photocatalytic performance. New J. Chem. 2017, 10, 1039. [Google Scholar]
- Pan, X.; Yang, P.; Nan, H.; Yang, L.; Chen, H.; Zhao, X. Preparation and enhanced visible-light photoelectrocatalytic activity of ternary TiO2-ZnO/RGO nanocomposites. Electrochim. Acta 2018, 261, 284–288. [Google Scholar] [CrossRef]
- Rakkesh, R.; Balakumar, S. Facile synthesis of ZnO/TiO2 core-shell nanostructures and their photocatalytic activities. J. Nanosci. Nanotechnol. 2013, 13, 370–376. [Google Scholar] [CrossRef]
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.; Stankovich, S.; Jung, I.; Field, D.; Ventrice, C.; et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Nurdiansah, H.; Susanti, D.; Firlyana, R.; Purwaningsih, H. Effect of rGO Addition Toward Photocatalyst Properties of ZnO/rGO/TiO2 for Rhodamine B Degradation. Mater. Sci. Forum 2019, 964, 174–179. [Google Scholar] [CrossRef]
- Huong, N.; Dat, N.; Thinh, D.; Anh, T.; MinhNguyet, D.; Quan, T.; Long, P.; Nam, H.; Phong, M.; Hieu, N. Optimization of the antibacterial activity of silver nanoparticles-decorated graphene oxide nanocomposites. Synth. Met. 2020, 268, 116492. [Google Scholar] [CrossRef]
Element | Weight % | Atom % |
---|---|---|
C | 20.97 | 36.47 |
O | 36.19 | 47.26 |
Ti | 22.17 | 9.67 |
Zn | 20.67 | 6.60 |
Totals | 100.00 | 100.00 |
Materials. | Butanone Concentration (ppm) | Response | Operating Temperature (°C) | Low Detection Limit | Reference |
---|---|---|---|---|---|
TiO2 nanoflowers | 700 | 1.18(Ra/Rg) | 60 | Not mentioned | 6 |
2% Pt/ZnO twin-rods | 100 | 35.2(Ra/Rg) | 450 | 5 ppm | 7 |
ZnO bicone | 100 | 29.4(Ra/Rg) | 400 | 0.41 ppm | 8 |
WO3-Cr2O3 nanorods | 100 | 5.6(Ra/Rg) | 205 | 5 ppm | 9 |
SiO2@CoO core shell | 100 | 44.7(Ra/Rg) | 350 | Not mentioned | 10 |
ZnO-TiO2-rGO | 100 | 28.9%(ΔR/Ra) | 145 | 63 ppb | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Yu, Y.; Yuan, Z.; Meng, F. Ppb-Level Butanone Sensor Based on ZnO-TiO2-rGO Nanocomposites. Chemosensors 2021, 9, 284. https://doi.org/10.3390/chemosensors9100284
Liao Z, Yu Y, Yuan Z, Meng F. Ppb-Level Butanone Sensor Based on ZnO-TiO2-rGO Nanocomposites. Chemosensors. 2021; 9(10):284. https://doi.org/10.3390/chemosensors9100284
Chicago/Turabian StyleLiao, Zhijia, Yao Yu, Zhenyu Yuan, and Fanli Meng. 2021. "Ppb-Level Butanone Sensor Based on ZnO-TiO2-rGO Nanocomposites" Chemosensors 9, no. 10: 284. https://doi.org/10.3390/chemosensors9100284
APA StyleLiao, Z., Yu, Y., Yuan, Z., & Meng, F. (2021). Ppb-Level Butanone Sensor Based on ZnO-TiO2-rGO Nanocomposites. Chemosensors, 9(10), 284. https://doi.org/10.3390/chemosensors9100284